Math 225: Calculus III
Exam II November 1, 1990

Name:
Score: \qquad

Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this answer sheet. There are 16 multiple choice questions worth 6 points each. You start with 6 free points.

Find the limit $\lim _{(x, y) \rightarrow(1,1)} \frac{x^{2}-y^{2}}{x-y} .201-1$ does not exist
Let $f(x, y)=y^{x}$. Compute $f_{x y}(2, e)$. 3e 1 e $2 e 0$
A rectangular sheet of metal is expanding. When the width is 2 inches and the length is 3 inches, the width is increasing at the rate of $0.25 \mathrm{in} / \mathrm{hr}$ and the length at $0.5 \mathrm{in} / \mathrm{hr}$. At what rate is the area of the rectangle increasing? $1.75 \mathrm{in}^{2} / \mathrm{hr} 0.75 \mathrm{in}^{2} / \mathrm{hr} 3 \mathrm{in}^{2} / \mathrm{hr} 4.5 \mathrm{in}^{2} / \mathrm{hr} 6 \mathrm{in}^{2} / \mathrm{hr}$

Suppose that z is a function of u and v, and that $u=\cos (x y)$ and $v=\sin (x / y)$. If $z_{u}(-1,0)=3$ and $z_{v}(-1,0)=1$, find $\mathrm{z} / d y$ when $x=\pi$ and $y=1 . \pi 10-\pi 3 \pi$

Which of the following represents the graph of the function $f(x, y)=12 y-y^{3}-3 x^{2}$?

Suppose $w(u, v)$ is a function of u and v and that $\mathrm{w} / d u=4 u^{3} v^{2}-2 u v^{4}, \mathrm{w} / d v=2 u^{4} v-4 u^{2} v^{3}$. The equation $w(u, v) \equiv 0$ defines u as a function of v. Find $\frac{d u}{d v} \cdot \frac{u\left(2 v^{2}-u^{2}\right)}{v\left(2 u^{2}-v^{2}\right)} 0 \frac{2 v\left(v^{2}-u^{2}\right)}{u\left(u^{4}-6 v^{2}\right)} \frac{v\left(v^{2}-6 u^{2}\right)}{4 u\left(u^{2}-v^{2}\right)}-\frac{2 u^{3} v^{2}-2 u v^{3}}{2 u^{4} v-4 u^{2} v^{3}}$

Compute the derivative of $f(x, y)=\ln \left(x^{2} y-y^{2}-2\right)$ in the direction $3 \subset+4 \supset$ at the point $(2,1) .4$ $12 \subset+8 \supset 4 \subset+2 \supset 20$ does not exist

Find the direction in which the function $f(x, y)=x^{3}-y^{2} x-2 x y^{2}$ increases most rapidly at the point $(1,-1) . \supset \subset 3 x^{2} \subset-2 x y \supset\left(x^{2}-y\right) \subset-x \supset 2 \subset-\supset$

Determine the equation of the tangent plane to the paraboloid $z=9-4 x^{2}-y^{2}$ at the point $(1,1,4)$. $8 x+2 y+z=14 x+y+4 z=184 x+2 y+z=10 x+8 y+4 z=25 x+4 y+z=9$

Compute the differential of the function $f(x, y, z)=x \cos \left(\frac{y}{z}\right) \cdot \cos \left(\frac{y}{z}\right) d x-\frac{x}{z} \sin \left(\frac{y}{z}\right) d y+\frac{x y}{z^{2}} \sin \left(\frac{y}{z}\right) d z$ $\cos \left(\frac{y}{z}\right)+\frac{x}{z} \sin \left(\frac{y}{z}\right)+\frac{x y}{z^{2}} \sin \left(\frac{y}{z}\right) \cos \left(\frac{y}{z}\right) d x-\sin \left(\frac{y}{z}\right) d y-\sin \left(\frac{y}{z}\right) d z \sin \left(\frac{y}{z}\right)-\frac{x}{z} \cos \left(\frac{y}{z}\right)+\frac{x y}{z^{2}} \sin \left(\frac{y}{z}\right) \sin \left(\frac{y}{z}\right) d x-$ $\frac{y}{z} \cos \left(\frac{x}{z}\right) d y$

Determine the critical points of the function $f(x, y)=3 x^{2}-3 x y^{2}+2 y^{3} .(0,0),(2,2)(0,0),(2,0),(2,2)$ $(0,0),(2,0)(0,0),(2,2),(-2,2)(0,0),(2,0),(2,2),(-2,2)$

The function $f(x, y)=2 x^{3}-6 x+2 y^{3}-3 x y^{2}$ has a critical point at $(\sqrt{2}, \sqrt{2})$. Use the Second Partials Test to determine which of the following is true at this point: f has a relative minimum f has a relative maximum f has a saddle point test is inconclusive none of the above

Find the maximum of the function $f(x, y)=y^{3}+3 x^{2} y$ in the region $x^{2}+y^{2} \leq 4.8 \sqrt{2} 801616 \sqrt{2}$
Determine which of the following sets of equations must be solved to find the extreme values of the function $f(x, y)=x^{3} y+y^{2} x+x y^{4}$ subject to the constraint $x^{4}+4 x y+y^{4}=4.3 x^{2} y+y^{2}+y^{4}=\lambda\left(4 x^{3}+4 y\right)$

$$
x^{3}+2 x y+4 x y^{3}=\lambda\left(4 x+4 y^{3}\right)
$$

$$
x^{4}+4 x y+y^{4}=4
$$

$3 x^{2} y+y^{2}+y^{4}=\lambda\left(4 x^{3}+4 y^{3}\right) \quad 3 x^{2} y+y^{2}+y^{4}=\lambda\left(4 x^{3}+4 y+4 y^{3}\right) 3 x^{2} y+y^{2}+y^{4}=\lambda\left(4 x^{3}+4 y^{3}\right) \quad 3 x^{2} y+y^{2}+y^{4}=\lambda(4 x$ $x^{3}+2 x y+4 x y^{3}=\lambda\left(4 x^{3}+4 y^{3}\right) 3 x^{2}+2 y+4 y^{3}=\lambda\left(4 x+4 y^{3}\right) \quad x^{3}+2 x y+4 x y^{3}=\lambda\left(4 x^{3}+4 y^{3}\right) x^{3}+2 x y+4 x y^{3}=\lambda(x$ $4 x^{3}+4 y+4 y^{3}=0 \quad x^{4}+4 x y+y^{4}=4$

Let R be the triangle in the plane with vertices at the points $(0,0),(0,1)$, and (1,1). Compute the double integral ${ }_{R} x^{2} y d A \cdot \frac{1}{10} \quad \frac{1}{15} \quad \frac{1}{2} \frac{1}{3} \frac{1}{5}$

Reverse the order of integration of the iterated integral $\int_{0}^{1} \int_{\sqrt{y}}^{1} f(x, y) . \int_{0}^{1} \int_{0}^{x^{2}} f(x, y) \int_{1}^{\sqrt{x}} \int_{0}^{1} f(x, y)$ $\int_{0}^{1} \int_{\sqrt{x}}^{1} f(x, y) \int_{\sqrt{y}}^{1} \int_{0}^{1} f(x, y) \int_{0}^{1} \int_{x^{2}}^{1} f(x, y)$

