Math 225: Calculus III
Final Exam December 19, 1990

Name:
Score:

Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this answer sheet. There are 25 multiple choice questions worth 6 points each.

A vector is perpendicular to a vector $\underset{i}{ } \equiv 0 \times \equiv 0+\equiv 0=c$, $\operatorname{somescalar}(\underline{\propto})=0$
Compute the projection of $=2 \subset+3 \supset+5$ onto $\equiv \subset+2 \supset+2.2 \subset+4 \supset+42 \subset+3 \supset+5$ $2 \subset+6 \supset+10 \subset+\frac{3}{2} \supset+\frac{5}{2} \frac{1}{2} \subset+\supset+$

Let $=\subset+\supset+$ and $\equiv 2 \subset+3 \supset+4$. Compute $\times 1-2 \mathrm{\jmath}+2 \mathrm{\imath}+3 \mathrm{\jmath}+41+2 \mathrm{\jmath}+3-1+2 \mathrm{\jmath}-3$
Determine the symmetric equations of the line through the points $(-1,0,3)$ and $(2,1,-1) . \frac{x+1}{3}=y=$ $\frac{z-3}{-4} \frac{x+1}{3}=y, \quad z=3 x=-1, \quad y=\frac{z+1}{-4} \frac{x-2}{-1}=\frac{z+1}{3}, \quad y=1 \frac{x-2}{-1}=y-1=\frac{z+1}{3}$

Determine the equation of the plane containing the points $(0,0,0),(1,2,3)$ and $(4,5,6) . x-2 y+z=0$ $2 x-y=05 x-4 y=04 x+y-2 z=04 x-2 y-z=0$

Find $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$. Does not exist $1 \frac{1}{2} 0-1$
Suppose the motion of a particle is described by $(t)=e^{t} \subset+e^{-t} \supset+\frac{1}{\sqrt{2}} t^{2}, t \geq 0$. Find the particle's speed at time $t=1.3 .0864 .5003 .7652 .0212 .920$

Suppose a particle moves along the path $(t)=\cos \left(t^{2}\right) \subset+\sin \left(t^{2}\right) \supset+t^{2}, 0 \leq t \leq \sqrt{2 \pi}$. Find the total distance travelled by the particle. 8.8866 .2834 .4432 .50712 .566

A 1 meter cube is being compressed. After 2 seconds, its height is 99 cm and is decreasing at a rate of $1 \frac{\mathrm{~cm}}{\mathrm{sec}}$ while its depth and width are 101 cm and are increasing at a rate of $0.5 \frac{\mathrm{~cm}}{\mathrm{sec}}$. Find the rate of change in the volume of the cube after 2 seconds of being compressed. $-202 \frac{\mathrm{~cm}^{3}}{\operatorname{Sec}} 0 \frac{\mathrm{~cm}^{3}}{\mathrm{Sec}}-99 \frac{\mathrm{~cm}^{3}}{\mathrm{Sec}}-9801 \frac{\mathrm{~cm}^{3}}{\mathrm{Sec}}-5 \frac{\mathrm{~cm}^{3}}{\mathrm{Sec}}$

Let $f(x, y, z)=x^{2} y+y^{2} z+z^{2} x$. Find the derivative of f in the direction of the vector $\sqrt{2} \subset+\supset+$ at the point $(0,1,2) \cdot \frac{5}{2}+2 \sqrt{2} 4 \subset+4 \supset+\frac{3}{2}+\sqrt{2} 6+\frac{\sqrt{2}}{2} \frac{\sqrt{2}}{2} \subset+\frac{1}{2} \supset+\frac{1}{2}$

Let $f(x, y, z)=x y z^{2}+2 x^{2} y$. Find the direction of maximum increase in f at the point $(-1,-2,1)$. $6 \subset+\supset+4-\subset-2 \supset-2 \subset-\supset-4 \subset-2 \supset--4 \subset+\supset+2$

Let $f(x, y)=x^{3}+x y+y^{2}$. Determine which of the following statements is true. f has a relative minimum at $\left(\frac{1}{6},-\frac{1}{12}\right)$. f has a relative maximum at $\left(\frac{1}{6},-\frac{1}{12}\right) . f$ has a saddle point at $\left(\frac{1}{6},-\frac{1}{12}\right)$. $\left(\frac{1}{6},-\frac{1}{12}\right)$ is not a critical point of f None of the above

Find the minimum of $f(x, y)=x\left(1-e^{y}\right)$ on the unit square $0 \leq x \leq 1,0 \leq y \leq 1 .-1.7180-1-0.718$ -2.718

Find the maximum of $f(x, y)=2 y^{3}+6 x^{2} y$ subject to the constraint $x^{2}+y^{2}=4.16 \sqrt{2} 1818 \sqrt{3} 1624$
Evaluate $\int_{0}^{2} \int_{1}^{1-x^{2}} x y . \frac{4}{3} \frac{1}{3} 01 \frac{2}{3}$
Reverse the order of integration in the iterated integral $\int_{-1}^{1} \int_{|x|}^{1} \cos \left(y^{3 / 2}\right) \cdot \int_{0}^{1} \int_{-y}^{y} \cos \left(y^{3 / 2}\right) \int_{|x|}^{1} \int_{-1}^{1} \cos \left(y^{3 / 2}\right)$ $\int_{-1}^{1} \int_{0}^{|y|} \cos \left(y^{3 / 2}\right) \int_{0}^{1} \int_{0}^{y} \cos \left(y^{3 / 2}\right) \int_{-1}^{1} \int_{-y}^{0} \cos \left(y^{3 / 2}\right)$

Let $=x y^{3} \subset+y z^{3} \supset+z x^{3}$. Compute . $-3 y z^{2} \subset-3 x^{2} z \supset-3 x y^{2} x^{3}+y^{3}+z^{3} x^{3} \subset-y^{3} \supset+z^{3}$ $-3 x y^{2} \subset+3 y z^{2} \supset-3 z x^{2} 0$

Which of the following integrals gives the volume of the solid bounded by the planes $x+y-z=0, x-y+$ $z=0, x=0, y=0$, and $x+y=2 . \int_{0}^{2} \int_{0}^{2-x} \int_{y-x}^{y+x} 1 d z d y d x \int_{0}^{2} \int_{0}^{2-x} \int_{0}^{2-y-x} 1 d z d y d x \int_{0}^{2} \int_{y-2}^{2-y} \int_{y-x}^{y+x} 1 d z d x d y$ $\int_{0}^{2} \int_{0}^{2-y} \int_{0}^{y+x} 1 d z d y d x \int_{0}^{2} \int_{2-x}^{2} \int_{y-x}^{2} 1 d z d y d x$

Let D be the solid in the first octant that lies below the plane $z=1$ and is bounded by $x^{2}+y^{2}=$ 9. Write ${ }_{D} x y z d V$ in cylindrical coordinates. $\int_{0}^{\pi / 2} \int_{0}^{3} \int_{0}^{1} z r^{3} \cos (\theta) \sin (\theta) d z \int_{0}^{3} \int_{0}^{\pi} \int_{0}^{1} z r^{2} \cos (\theta) \sin (\theta) d z$ $\int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{3} z r^{2} \cos (\theta) \sin (\theta) d z \int_{0}^{\pi / 2} \int_{0}^{3} \int_{0}^{1} z r^{3} \cos (\theta) \sin ^{2}(\theta) d z \int_{0}^{\pi / 2} \int_{0}^{1} \int_{0}^{3} z r^{2} \cos (\theta) \sin (\theta) d z$

Compute ${ }_{D}\left(x^{2}+y^{2}\right) d V$ where D is the unit sphere $x^{2}+y^{2}+z^{2}=1$. $\frac{8 \pi}{15} \frac{\pi^{2}}{4} \frac{3 \pi}{5} \frac{4 \pi^{2}}{3} \frac{4 \pi}{5}$
Let C be the curve $(t)=t \subset+t^{2} \supset, 0 \leq t \leq 1$. Compute $\int_{C} x^{3} d x+x y d y$. $\frac{13}{20} \frac{1}{2} \frac{7}{12} \frac{3}{2} \frac{14}{15}$
Let Σ be the portion of the plane $3 x+2 y+z=0$ under the rectangle $0 \leq x \leq 2,0 \leq y \leq 3$ in the $x y$-plane. Compute $\Sigma z^{2}-12 x y d S .144 \sqrt{14} 144288 \sqrt{2} 288 \sqrt{7} 288$

Let $=x e^{x y} \subset-y e^{x y} \supset+z$, let Σ be the sphere $x^{2}+y^{2}+z^{2}=4$, and let be the outward normal vector to Σ. Evaluate the flux integral $\Sigma d S . \frac{32 \pi}{3} \quad \frac{4 \pi}{3} \quad \frac{8 \pi}{3} \quad \frac{16 \pi}{3} 0$

Let C be the intersection of the paraboloid $x^{2}+y^{2}+z=2$ and the plane $x+y+z=1$. Compute $\int_{C} x^{2} d x+y^{2} d y+z^{2} d z .0 \frac{\pi}{3} \frac{2 \pi}{3} \frac{4 \pi}{3} \frac{8 \pi}{3}$

Let $=-z^{2} \subset+e^{z} \supset+\left(e^{z} y-2 x z\right)$ and let $(t)=t \subset+t^{2} \supset+t^{3}, 0 \leq t \leq 1$. Evaluate $\int_{C} d$. $e-110$ $e-e^{-1} 2 e-1$

