Math 225: Calculus III	Name:
Exam I September 26, 1991	Score:

Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this answer sheet. There are 17 multiple choice questions worth 6 points each.

Find a unit vector parallel to the line x = -1 + 2t, y = 2 - t, z = 3t, $0.53 \subset -0.27 \supset +0.80$ $-0.45 \subset +0.89 \supset 0.58 \subset -0.58 \supset +0.58 \ -0.71 \subset +0.71 \supset$

Find a vector perpendicular to the plane 2x - 3y + 5z = 27. $2 \subset -3 \supset +5$ $3 \subset -2 \supset 5 \subset +5 \supset +$ $\frac{1}{\sqrt{38}}(\subset -\supset +) \frac{1}{\sqrt{3}}(\subset +\supset +)$

Compute the angle in radians between the vectors $= \bigcirc - \bigcirc +$ and $= 2 \bigcirc + \bigcirc .$ 1.31 1.24 1.57 2.03 1.87 Determine the projection of the vector $= 2 \subset + \supset +$ onto the vector $= \subset + \supset + 1.33 \subset +1.33 \supset +1.33$ $2.68 \subset +0.67 \supset -0.67 \ 0.67 \subset +0.67 \supset +0.67 \ 5.32 \subset +1.33 \supset -1.33 \ 0.58 \subset +0.58 \supset +0.58 \supset$

Find the area of the parallelogram with vertices (0,0), (3,1), (2,4), (5,5). 10 5 $\sqrt{12}$ 15 5 $\sqrt{5}$

Determine the parametric equations of the line through the points (1, -1, 1) and (2, 0, 5). x = 1 + 1 $t, \quad y = -1 + t, \quad z = 1 + 4t \ x = 1 + 2t, \quad y = -1, \quad z = 1 + 5t \ x = 2 + t, \quad y = -t, \quad z = 5 + t$ x = 1 + 3t, y = -1 - t, z = 1 + 6t, x = 1 + t, y = 1 - t, z = -4 + 5t

Compute the distance from the point (2, 1, 1) to the line x = t, y = 2t, z = 3t. 1.58 1.32 1.79 2.05 2.25

Find the equation of the plane through the origin that is parallel to the vectors $= \subset + \supset +$ and $= \subset$. y-z = 0 x + y + z = 0 x + y - z = 0 x - y = 0 x - z = 0

Determine the distance of the plane 3x - y + 2z = 6 to the origin. 1.6 2.0 0.8 1.2 1.0

Let $(t) = e^t \subset +e^{-t} \supset +t$. Compute '(0). $\subset - \supset + \subset - \supset e^t \subset -e^{-t} \supset +t e^t \subset +e^{-t} \supset + \subset + \supset +$ Which of the following curves is not smooth at some point in its domain? $(t) = t^2 \subset +t^3 \supset +t^5$ $(t) = t \subset +t^2 \supset +t^3 \ (t) = (t + t^2) \subset +t^3 \supset +(t - 1)^5 \ (t) = \cos(t) \subset +\sin(t) \supset +t \ (t) = e^t \subset +e^{-t} \supset +t$

Find a parameterization of the graph of the function $f(x) = x^3 - x$. $(t) = t \subset +(t^3 - t) \supset (t) =$ $(t^2-1) \subset +t \supset (t) = (t-1) \subset +t(t+1) \supset (t) = t \subset +t^3 \supset -t \ (t) = t \subset +(t^2-1) \supset t \subset +t^3 \supset -t \ (t) = t \subset +(t^2-1) \supset t \subset +t^3 \supset -t \ (t) = t \supset -t \ (t) \supset -t \ (t) = t \supset -t \ (t) \supset -t \ (t) = t \supset -t \ (t) \supset -t \ (t) = t \supset -t \ (t) \cap -t \ (t) \supset -t \ (t) \cap -t \ (t) \$

Suppose a particle initially at rest has the following acceleration $(t) = t \subset +t^2 \supset +t^3, t \geq 0$. Calculate the particle's speed at t = 1.0.65 0.45 0.85 1.05 1.25

Suppose $(t) = e^t \subset +t \supset -\frac{1}{t}$. Compute $\int_1^2(t) dt$. $4.67 \subset +1.50 \supset -0.69$ $7.39 \subset +2.00 \supset -0.69$ $4.67 \subset +0.75 \supset 8.70 \supset 2.72 \subset +1.00 \supset -0.25$

Which of the following integrals gives the length of the curve $(t) = t \cos(t) \subset +t \sin(t) \supset +t^2, 0 \leq t \leq \pi$?

 $\int_{0}^{\pi} \sqrt{1+5t^{2}} dt \int_{0}^{\pi} \sqrt{t(\cos(t)+\sin(t)+t)} dt \int_{0}^{\pi} \sqrt{\sin(t)-\cos(t)+2t} dt \int_{0}^{\pi} \sqrt{1+t^{2}} dt \int_{0}^{\pi} 2t dt$ Find the equation of the line tangent to the curve $(t) = (1-t^{2}) \subset +t^{3} \supset +(1+t^{4})$ at the point (0,1,2). $x = -2t, \quad y = 1+3t, \quad z = 2+4t \quad x = -2t, \quad y = 3t^{2}, \quad z = 4t^{3} \quad x = 1-2t, \quad y = 3t, \quad z = 1+4t$ x = -2t, $y = 1 + 3t^2$, $z = 2 + 4t^3$, x = t, y = 1, z = 2 + t

Suppose a particle's motion is described by $(t) = t \cos(t) \subset +t \sin(t) \supset +t^2$. Calculate the tangential component of the particle's acceleration. $\frac{5t}{\sqrt{1+5t^2}} \frac{4t}{\sqrt{2+4t^2}} \frac{-\sin(t) \subset -\cos(t) \supset +2t}{\sqrt{1+4t^2}} \frac{1}{\sqrt{5}} (-\cos(t) \subset -\sin(t) \supset +2)$

 $\frac{1}{\sqrt{1+5t}}$