Math 225: Calculus III
Exam I September 26, 1991

Name:
Score:

Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this answer sheet. There are 17 multiple choice questions worth 6 points each.

Find a unit vector parallel to the line $x=-1+2 t, \quad y=2-t, \quad z=3 t . \quad 0.53 \subset-0.27 \supset+0.80$ $-0.45 \subset+0.89 \supset 0.58 \subset-0.58 \supset+0.58-0.71 \subset+0.71 \supset$

Find a vector perpendicular to the plane $2 x-3 y+5 z=27.2 \subset-3 \supset+53 \subset-2 \supset 5 \subset+5 \supset+$ $\frac{1}{\sqrt{38}}(\subset-\supset+) \frac{1}{\sqrt{3}}(\subset+\supset+)$

Compute the angle in radians between the vectors $=\subset-\supset+$ and $\equiv 2 \subset+\supset .1 .311 .241 .572 .031 .87$
Determine the projection of the vector $=2 \subset+\supset+$ onto the vector $\equiv \subset+\supset+1.33 \subset+1.33 \supset+1.33$ $2.68 \subset+0.67 \supset-0.670 .67 \subset+0.67 \supset+0.675 .32 \subset+1.33 \supset-1.330 .58 \subset+0.58 \supset+0.58$

Find the area of the parallelogram with vertices $(0,0),(3,1),(2,4),(5,5) .105 \sqrt{12} 155 \sqrt{5}$
Determine the parametric equations of the line through the points $(1,-1,1)$ and $(2,0,5) . x=1+$ $t, \quad y=-1+t, \quad z=1+4 t x=1+2 t, \quad y=-1, \quad z=1+5 t x=2+t, \quad y=-t, \quad z=5+t$ $x=1+3 t, \quad y=-1-t, \quad z=1+6 t x=1+t, \quad y=1-t, \quad z=-4+5 t$

Compute the distance from the point $(2,1,1)$ to the line $x=t, \quad y=2 t, \quad z=3 t .1 .581 .321 .792 .05$ 2.25

Find the equation of the plane through the origin that is parallel to the vectors $=\subset+\supset+$ and $\equiv \subset$. $y-z=0 x+y+z=0 x+y-z=0 x-y=0 x-z=0$

Determine the distance of the plane $3 x-y+2 z=6$ to the origin. 1.62 .00 .81 .21 .0
Let $(t)=e^{t} \subset+e^{-t} \supset+t$. Compute ' $(0) . \subset-\supset+\subset-\supset e^{t} \subset-e^{-t} \supset+t e^{t} \subset+e^{-t} \supset+\subset+\supset+$
Which of the following curves is not smooth at some point in its domain? $(t)=t^{2} \subset+t^{3} \supset+t^{5}$ $(t)=t \subset+t^{2} \supset+t^{3}(t)=\left(t+t^{2}\right) \subset+t^{3} \supset+(t-1)^{5}(t)=\cos (t) \subset+\sin (t) \supset+t(t)=e^{t} \subset+e^{-t} \supset+t$

Find a parameterization of the graph of the function $f(x)=x^{3}-x . \quad(t)=t \subset+\left(t^{3}-t\right) \supset(t)=$ $\left(t^{2}-1\right) \subset+t \supset(t)=(t-1) \subset+t(t+1) \supset(t)=t \subset+t^{3} \supset-t(t)=t \subset+\left(t^{2}-1\right) \supset$

Suppose a particle initially at rest has the following acceleration $(t)=t \subset+t^{2} \supset+t^{3}, t \geq 0$. Calculate the particle's speed at $t=1$. 0.650 .450 .851 .051 .25

Suppose $(t)=e^{t} \subset+t \supset-\frac{1}{t}$. Compute $\int_{1}^{2}(t) d t .4 .67 \subset+1.50 \supset-0.697 .39 \subset+2.00 \supset-0.69$ $4.67 \subset+0.75 \supset 8.70 \supset 2.72 \subset+1.00 \supset-0.25$

Which of the following integrals gives the length of the curve $(t)=t \cos (t) \subset+t \sin (t) \supset+t^{2}, 0 \leq t \leq \pi$? $\int_{0}^{\pi} \sqrt{1+5 t^{2}} d t \int_{0}^{\pi} \sqrt{t(\cos (t)+\sin (t)+t)} d t \int_{0}^{\pi} \sqrt{\sin (t)-\cos (t)+2 t} d t \int_{0}^{\pi} \sqrt{1+t^{2}} d t \int_{0}^{\pi} 2 t d t$

Find the equation of the line tangent to the curve $(t)=\left(1-t^{2}\right) \subset+t^{3} \supset+\left(1+t^{4}\right)$ at the point $(0,1,2)$. $x=-2 t, \quad y=1+3 t, \quad z=2+4 t x=-2 t, \quad y=3 t^{2}, \quad z=4 t^{3} x=1-2 t, \quad y=3 t, \quad z=1+4 t$ $x=-2 t, \quad y=1+3 t^{2}, \quad z=2+4 t^{3} x=t, \quad y=1, \quad z=2+t$

Suppose a particle's motion is described by $(t)=t \cos (t) \subset+t \sin (t) \supset+t^{2}$. Calculate the tangential component of the particle's acceleration. $\frac{5 t}{\sqrt{1+5 t^{2}}} \frac{4 t}{\sqrt{2+4 t^{2}}} \frac{-\sin (t) \subset-\cos (t) \supset+2 t}{\sqrt{1+4 t^{2}}} \frac{1}{\sqrt{5}}(-\cos (t) \subset-\sin (t) \supset+2)$ $\frac{1}{\sqrt{1+5 t}}$

