Math 225: Calculus III	Name:
Exam II October 31, 1991	Score:

Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this answer sheet. There are 15 multiple choice questions worth 6 points each. You start with 10 points. Determine which of the following shaded regions corresponds to the domain of the function

 $f(x,y) = \frac{\sqrt{1-(x^2+y^2)}}{xy}.$ Determine which function below has level curves of the form:

 $f(x,y)=\frac{y}{3x^2}\;f(x,y)=x^2+3y^2\;f(x,y)=3x^2y\;f(x,y)=x^2-3y^2\;f(x,y)=y-3x^2$ Determine which function below has a graph like the following:

 $\begin{array}{l} f(x,y) = x^3 - x^2 - y^2 \ f(x,y) = x - 1 - y \ f(x,y) = x^2 - x - y \ f(x,y) = y - x^2 + x \ f(x,y) = y^2 - x^3 + x \\ \text{Compute the limit } \lim_{(x,y) \to (1,1)} [\ln(x^2 - y^2) - \ln(x - y)]. \end{array}$ $\ln(2) \ 0 \ 1 \ \infty \ does \ not \ exist$

If $f(x, y, z) = \sin(xy)e^{-z} + e^y + x^2$, compute $f_{xz}(1, \pi, 0)$. $\pi 0 \ 1 \ 2 - \pi/e$ Let $z = e^{-x^2 - y^2}$, x = uv, and $y = u^2 - v^2$. Compute $\frac{\partial z}{\partial v}$. $e^{-x^2 - y^2}(-2ux + 4yv) \ e^{-u^2 + v^2}(-2u^2v + 4v) \ e^{-x^2 - y^2}(-2x - 2y) \ e^{-u^2v^2}(-2u^2v + 4v(u^2 - v^2)) \ e^{-u^4 - v^4}(-2x - v^2)$ 2y)

A particle moves along a smooth path in the plane. At time t = 1 the particle is at the point (3, -4)and its velocity is $= 2 \subset +3 \supset$. At what rate is the distance of the particle to the origin changing at that moment?

decreasing 1.20 increasing 1.20 decreasing 3.74 increasing 3.74 neither increasing nor decreasing at t = 1Find the derivative of $f(x, y, z) = x^3y - 2y^2z$ in the direction of the vector $z = -\zeta + \zeta + \zeta + 2$ at the point (1, 1, 1).

 $-4.08\ 0.00\ -10.0\ -0.82\ 2.96$

Compute the gradient of the function $f(x, y, z) = \cos(xy) - z^2$.

 $-y\sin(xy) \subset -x\sin(xy) \supset -2z - y\sin(xy) \subset +x\cos(xy) \supset +2z - y\sin(xy) - x\sin(xy) - 2z - y\sin(xy) + z\sin(xy) - 2z - y\sin(xy) + z\sin(xy) - 2z - y\sin(xy) - 2z - y\sin(xy)$ $x\cos(xy) + 2z - \sin(xy) - 2z$

Find the direction in which the function $f(x,y) = y^3 x^2 + x$ increases most rapidly at the point (2,1). $5 \subset +12 \supset 3 \subset +3 \supset 4 \subset +2 \supset 17\ 13$

Determine the equation of the plane tangent to the graph of $f(x,y) = 2x^4 - 3xy^2 + y^3$ at the point (1, 1, 0).

 $5x - 3y - z = 2 \ x - 3y - z = -2 \ 8x - 6y - z = 2 \ 4x - 6y + z = -2 \ 5x - 3y = 2$

Find all the critical points of the function $f(x, y) = 14x^3 - 21x^2y + 5y^3 + 24y + 1$.

(-2, -2), (2, 2), (0, 1.26), (0, -1.26), (-2, -2), (2, 2), (-2, -2), (-2, 2), (2, -2), (2, 2), (0, 1.26), (0, -1(-2, 2), (2, -2), (0, 1.26), (0, -1.26)

Choose the statement below that is **true** about the function $f(x, y) = e^{-x}(x^2 + y^2)$.

f has a saddle point at (2,0) f has a local maximum at (2,0) f has a local minimum at (2,0) (2,0) is **not** a critical point of f none of the above

Find the minimum of $f(x, y) = x^2 - 6xy + y^3$ on the rectangle $0 \le x \le 20, 0 \le y \le 10$. -108 - 106 - 120 - 200 0

Find a point on the curve $13x^2 + 10xy + 13y^2 = 4$ where the value of the function $f(x, y) = x^2y^2$ is greater than or equal to its value at any other point on the curve. $\left(\frac{1}{2},-\frac{1}{2}\right)\left(\frac{1}{3},\frac{1}{3}\right)\left(-1,1\right)\left(1,-\frac{1}{\sqrt{5}}\right)\left(\frac{2}{\sqrt{13}},-\frac{2}{\sqrt{13}}\right)$