Math 225: Calculus III
Exam II October 31, 1991

Name:
Score:

Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this answer sheet. There are 15 multiple choice questions worth 6 points each. You start with 10 points.

Determine which of the following shaded regions corresponds to the domain of the function
$f(x, y)=\frac{\sqrt{1-\left(x^{2}+y^{2}\right)}}{x y}$.
Determine which function below has level curves of the form:
$f(x, y)=\frac{y}{3 x^{2}} f(x, y)=x^{2}+3 y^{2} f(x, y)=3 x^{2} y f(x, y)=x^{2}-3 y^{2} f(x, y)=y-3 x^{2}$
Determine which function below has a graph like the following:
$f(x, y)=x^{3}-x^{2}-y^{2} f(x, y)=x-1-y f(x, y)=x^{2}-x-y f(x, y)=y-x^{2}+x f(x, y)=y^{2}-x^{3}+x$
Compute the limit $\lim _{(x, y) \rightarrow(1,1)}\left[\ln \left(x^{2}-y^{2}\right)-\ln (x-y)\right]$.
$\ln (2) 01 \infty$ does not exist

If $f(x, y, z)=\sin (x y) e^{-z}+e^{y}+x^{2}$, compute $f_{x z}(1, \pi, 0)$.
$\pi 012-\pi / e$
Let $z=e^{-x^{2}-y^{2}}, x=u v$, and $y=u^{2}-v^{2}$. Compute $\frac{\partial z}{\partial v}$.
$e^{-x^{2}-y^{2}}(-2 u x+4 y v) e^{-u^{2}+v^{2}}\left(-2 u^{2} v+4 v\right) e^{-x^{2}-y^{2}}(-2 x-2 y) e^{-u^{2} v^{2}}\left(-2 u^{2} v+4 v\left(u^{2}-v^{2}\right)\right) e^{-u^{4}-v^{4}}(-2 x-$ 2y)

A particle moves along a smooth path in the plane. At time $t=1$ the particle is at the point $(3,-4)$ and its velocity is $\check{=} 2 \subset+3 \supset$. At what rate is the distance of the particle to the origin changing at that moment?
decreasing 1.20 increasing 1.20 decreasing 3.74 increasing 3.74 neither increasing nor decreasing at $t=1$ Find the derivative of $f(x, y, z)=x^{3} y-2 y^{2} z$ in the direction of the vector $=-\subset+\supset+2$ at the point $(1,1,1)$.
$-4.080 .00-10.0-0.822 .96$
Compute the gradient of the function $f(x, y, z)=\cos (x y)-z^{2}$.
$-y \sin (x y) \subset-x \sin (x y) \supset-2 z-y \sin (x y) \subset+x \cos (x y) \supset+2 z-y \sin (x y)-x \sin (x y)-2 z-y \sin (x y)+$ $x \cos (x y)+2 z-\sin (x y)-2 z$

Find the direction in which the function $f(x, y)=y^{3} x^{2}+x$ increases most rapidly at the point $(2,1)$.
$5 \subset+12 \supset 3 \subset+3 \supset 4 \subset+2 \supset 1713$
Determine the equation of the plane tangent to the graph of $f(x, y)=2 x^{4}-3 x y^{2}+y^{3}$ at the point (1, 1, 0).
$5 x-3 y-z=2 x-3 y-z=-28 x-6 y-z=24 x-6 y+z=-25 x-3 y=2$
Find all the critical points of the function $f(x, y)=14 x^{3}-21 x^{2} y+5 y^{3}+24 y+1$.
$(-2,-2),(2,2)(0,1.26),(0,-1.26),(-2,-2),(2,2)(-2,-2),(-2,2),(2,-2),(2,2),(0,1.26),(0,-1.26)$, $(-2,2),(2,-2)(0,1.26),(0,-1.26)$

Choose the statement below that is true about the function $f(x, y)=e^{-x}\left(x^{2}+y^{2}\right)$.
f has a saddle point at $(2,0) f$ has a local maximum at $(2,0) f$ has a local minimum at $(2,0)(2,0)$ is not a critical point of f none of the above

Find the minimum of $f(x, y)=x^{2}-6 x y+y^{3}$ on the rectangle $0 \leq x \leq 20,0 \leq y \leq 10$.
$-108-106-120-2000$
Find a point on the curve $13 x^{2}+10 x y+13 y^{2}=4$ where the value of the function $f(x, y)=x^{2} y^{2}$ is greater than or equal to its value at any other point on the curve.
$\left(\frac{1}{2},-\frac{1}{2}\right)\left(\frac{1}{3}, \frac{1}{3}\right)(-1,1)\left(1,-\frac{1}{\sqrt{5}}\right)\left(\frac{2}{\sqrt{13}},-\frac{2}{\sqrt{13}}\right)$

