Math 225: Calculus III

Final Exam May 2, 1994

Name:
Section:

Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this answer sheet. There are 25 multiple choice questions worth 5 points each. You start with 25 points.

Find the area of the parallelogram with vertices $(0,0,0),(1,2,-1),(0,1,1)$, and $(1,3,0)$.
$3.32 \quad 2.87 \quad 3.942 .60 \quad 2.35$
Find the parametric equations of the line that passes through the point $(1,0,-1)$ and is perpendicular to the plane $2 x-y+3 z=7$.
$x=1+2 t$
$y=-t$ $z=-1+3 t$
$2(x-1)-y+3(z+1)=7 x=2+t x=2 t \quad x=t$

$$
y=-1 \quad y=-t \quad y=0
$$

$$
z=3-t z=3 t \quad z=-t
$$

Find the equation of the plane through the point $(3,1,5)$ perpendicular to the y-axis.
$y=1 x+z=83 x+y+5 z=9 x+y+z=93(x-3)+(y-1)+5(z-5)=0$
A particle's position is given by $(t)=\cos (\pi t) \subset+\sin (\pi t) \supset+t^{2}$. Find its speed at $t=2$.
$\sqrt{16+\pi^{2}}-\pi \subset+\pi \supset+4 \sqrt{17} 2 \pi 4 \supset$
Suppose a particle's acceleration is $(t)=e^{t} \subset+e^{-t} \supset+$. Find the particle's position at time $t=1$ if it is initially at rest at the origin.
$(e-2) \subset+e^{-1} \supset+\frac{1}{2} e \subset+e^{-1} \supset+\frac{1}{2}(e-2) \subset+\left(e^{-1}+2\right) \supset+e \subset+\left(e^{-1}+2\right) \supset+\frac{1}{2}(e-1) \subset$ $+\left(e^{-1}+1\right) \supset+$

Let $(t)=2 t \subset+3 t^{2} \supset-t^{3}$. Find the unit tangent vector, (t), at $t=1 . \frac{2}{7} \subset+\frac{6}{7} \supset-\frac{3}{7} 2 \subset+2 \supset-3$ $2 \subset+6 t \supset-3 t^{2} \frac{2}{\sqrt{4+4 t^{2}+9 t^{4}}} \subset+\frac{2 t}{\sqrt{4+4 t^{2}+9 t^{4}}} \supset-\frac{3 t^{2}}{\sqrt{4+4 t^{2}+9 t^{4}}} \quad \frac{2}{\sqrt{17}} \subset+\frac{2}{\sqrt{17}} \supset-\frac{3}{\sqrt{17}}$

Compute $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}+y^{3}}{x^{2}+y^{2}} .012 \frac{1}{2}$ does not exist
Let $f(x, y)=x e^{x y}$. Compute $f_{x y}(2,1) .8 e^{2} 3 e^{2} 2 e^{2} 4 e^{2} 6 e^{2}$
The position and velocity of a smoothly moving particle at time $t=1$ are (1) $=3 \subset+4 \supset$ and $\check{(1)}=5 \subset-5 \supset$, respectively. Determine how fast the distance of the particle to the origin is changing at time $t=1$.
$\begin{array}{llll}-1 & -5 & 5 \sqrt{2} & -\sqrt{2} / 235\end{array}$
Find the direction in which the function $f(x, y)=\sin \left(x^{2}+x y\right)$ is increasing most rapidly at $(0,1)$.
$\subset \supset \subset+\supset \subset-\supset 2 \subset+\supset$
Find the equation of the plane tangent to the graph of $f(x, y)=x^{2} y-y^{3}$ at the point $(2,1)$.
$4 x+y-z=64 x+y-z=0 \quad 2 x y+x^{2}-3 y^{2}=5 \quad 4 x+y=9 \quad 4 x+y=0$
Find all of the critical points of the function $f(x, y)=x^{2} y-6 x y+8 y-x^{2}+6 x-8$.
$(2,1),(4,1)(2,1),(3,1),(4,1)(2,1),(2,-1),(3,1),(3,-1),(4,1),(4,-1)(2,0),(2,1),(4,0)$, $(4,1),(3,0),(3,1)(3,1)$

Let $f(x, y)=x^{3} y-3 x^{2} y$. determine which of the following statements is true.
f has a saddle point at $(3,0) . f$ has a local minimum at $(3,0) . f$ has a local maximum at $(3,0) . f$ is not continuous at $(3,0) .(3,0)$ is not a critical point of f.

Determine which of the following sysytems of equations must be solved to find the extrema of the function $f(x, y)=x^{2} y-y^{3}$ subject to the constraint $x^{4}+y^{4}=1$ using the method of Lagrange multipliers.

$$
\begin{aligned}
x y & =2 \lambda x^{3} \\
x^{2}-3 y^{2} & =4 \lambda y^{3} \\
x^{4}+y^{4} & =1 \\
2 x y & =\lambda x^{4} \\
x^{2}-3 y^{2} & =\lambda y^{4} \\
x^{4}+y^{4} & =1 \\
x y & =0 \\
x^{2}-3 y^{2} & =0 \\
x^{3}+y^{3} & =0
\end{aligned}
$$

$$
\begin{aligned}
x y & =0 \\
x^{2}-3 y^{2} & =0 \\
x^{4}+y^{4} & =1 \\
x y & =4 \lambda x^{3} \\
x^{2}-3 y^{2} & =4 \lambda y^{3} \\
x^{4}+y^{4} & =0
\end{aligned}
$$

Find the area enclosed by one leaf of the rose $r=6 \sin (2 \theta)$.
$9 \pi / 2 \quad 18 \pi \quad 9 \pi \quad 4 \pi \quad 6 \pi$
Find the centroid of the triangle in the $x y$-plane with vertices $(0,0),(2,1),(2,0)$.
$\left(\frac{4}{3}, \frac{1}{3}\right)\left(\frac{3}{4}, \frac{1}{4}\right)\left(\frac{5}{4}, \frac{1}{4}\right)\left(\frac{5}{4}, \frac{1}{3}\right)\left(\frac{4}{3}, \frac{1}{4}\right)$
Compute the volume of the portion of the solid region bewteen the spheres $\rho=1$ and $\rho=2$ that lies inside the upper nappe of the cone $x^{2}+y^{2}=z^{2}$.

$$
7 \pi(2-\sqrt{2}) / 3 \quad 5 \pi(\sqrt{2}-1) / 3 \quad 14 \pi / 3 \quad 5 \sqrt{2} \pi / 3 \quad 7 \pi
$$

Find the average value of the height function $f(x, y, z)=z$ in the solid region D inside the cylinder $x^{2}+y^{2}=1$ between the planes $x+y+z=4$ and $z=0$. The volume of D is 4π.
$2.06 \quad 2.84 \quad 2.57 \quad 3.21 \quad 2.28$
Compute the Jacobian $\frac{\partial(x, y)}{\partial(u, v)}$ of the change of coordinates $u=5 x+2 y$ and $v=y-2 x$.
$\begin{array}{lllll}\frac{1}{9} & 9 & 5 & \frac{1}{5} & -12\end{array}$
Let \mathcal{C} be the curve defined by $(t)=t^{3} \subset+t^{2} \supset, 0 \leq t \leq 1$. Compute $\int_{\mathcal{C}}(9 x+2 \sqrt{y}) d s$.
$\frac{13^{3 / 2}}{6} \quad \frac{17^{3 / 2}}{2} \quad \frac{15^{3 / 2}}{3} \quad \frac{11^{3 / 2}}{2} \quad \frac{9}{2}$
Use the Fundamental Theorem of Line Integrals to compute $\int_{\mathcal{C}}(2 x y+1) d x+\left(x^{2}+3 y^{2}-z\right) d y+(6 z-y) d z$. where \mathcal{C} is a smooth curve from $(0,0,0)$ to $(1,2,3)$.

32168644

Compute the surface area of the portion of the paraboloid $x^{2}+y^{2}+z=9$ above the plane $z=5$.
$\frac{\pi}{6}\left(17^{3 / 2}-1\right) \frac{\pi}{2}\left(11^{3 / 2}-1\right) \frac{\pi}{12}\left(13^{3 / 2}-1\right) \frac{\pi}{3}\left(15^{3 / 2}-1\right) \frac{13 \pi}{3}$
Let Σ be the part of the sphere $x^{2}+y^{2}+z^{2}=4$ above the triangle in the $x y$-plane with vertices $(0,0,0),(1,1,0)$, and $(1,0,0)$. Let $=y \subset-x \supset+2 x$ and let be the upward unit normal vector to Σ. Compute the flux integral ${ }_{\Sigma} d \sigma$.
$2 / 33 / 44 / 51 / 27 / 8$
Let \mathcal{C} be the intersection of the plane $y+z=1$ with the cylinder $x^{2}+y^{2}=4$, oriented counterclockwise. Let $=x^{2} \subset+x y \supset+z^{2}$. Use Stokes' Theorem to compute $\int_{\mathcal{C}} d$.
$02 \pi 3 \pi / 45 \pi / 16 \pi / 2$
Let Σ be the unit sphere with outward unit normal vector . Let $=x^{3} \subset+y^{3} \supset+z^{3}$. Use the Divergence Theorem to compute the flux integral ${ }_{\Sigma} d \sigma$.
$12 \pi / 516 \pi / 36 \pi 9 \pi / 22 \pi$

