
1. Let R be the region bounded by

y = x, xy = 2, xy3 = 1

Rewrite the integral Rx2y2 dA as an iterated integral in the variables u = xy
and v = x/y (do not evaluate).

Solution:

Solve for x and y in terms of u and v:
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x
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x = (uv)1/2 y = (u/v)1/2

Compute the Jacobian:
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Transform the equations of R into equations in u and v:

y = x→ (uv)1/2 = (u/v)1/2 → uv = u/v → v2 = 1→ v = 1xy = 2→ u = 2xy3 = 1→ (xy)y2 = 1→ u(u/v) = 1→ v = u2
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The new region is defined by

1 ≤ v ≤ u2, 1 ≤ u ≤ 2

Rx2y2 dA =
∫ 2

1

∫ u2

1
(uv)(u/v)

∣∣∣∣− 1
2v

∣∣∣∣ dv du =
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∫ u2

1
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2v
dv du

Note: In this problem it is easier to compute the Jacobian ‘backwards’:

∂(u, v)
∂(x, y)

= det yx
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2. (x, y) = x2yı + y3z + z4x.

÷ =./dx(x2y) +./dy(y3z) +./dz(z4x) = 2xy + 3y2z + 4z3x
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