1. Let R be the region bounded by

$$
y=x, \quad x y=2, \quad x y^{3}=1
$$

Rewrite the integral ${ }_{R} x^{2} y^{2} d A$ as an iterated integral in the variables $u=x y$ and $v=x / y$ (do not evaluate).

Solution:

Solve for x and y in terms of u and v :

$$
\begin{array}{rl}
u=x y & v=\frac{x}{y} \\
u v=x y \frac{x}{y}=x^{2} & \frac{u}{v}=\frac{x y}{x / y}=y^{2} \\
x=(u v)^{1 / 2} \quad y=(u / v)^{1 / 2}
\end{array}
$$

Compute the Jacobian:
$\frac{\partial(x, y)}{\partial(u, v)}=\operatorname{det} \frac{1}{2}(u v)^{-1 / 2} v \frac{1}{2}(u v)^{-1 / 2} u \frac{1}{2}\left(\frac{u}{v}\right)^{-1 / 2} \frac{1}{v} \frac{1}{2}\left(\frac{u}{v}\right)^{-1 / 2}\left(-\frac{u}{v^{2}}\right)=\frac{1}{4}\left(u v \frac{u}{v}\right)^{-1 / 2}\left(-\frac{u}{v}\right)-\frac{1}{4}\left(u v \frac{u}{v}\right)^{-1 / 2} \frac{u}{v}=\frac{1}{4} \frac{1}{u}\left(-\frac{u}{v}\right)$
Transform the equations of R into equations in u and v :
$y=x \rightarrow(u v)^{1 / 2}=(u / v)^{1 / 2} \rightarrow u v=u / v \rightarrow v^{2}=1 \rightarrow v=1 x y=2 \rightarrow u=2 x y^{3}=1 \rightarrow(x y) y^{2}=1 \rightarrow u(u / v)=1-$ solution.911122.1.eps
The new region is defined by

$$
\begin{gathered}
1 \leq v \leq u^{2}, \quad 1 \leq u \leq 2 \\
{ }_{R} x^{2} y^{2} d A=\int_{1}^{2} \int_{1}^{u^{2}}(u v)(u / v)\left|-\frac{1}{2 v}\right| d v d u=\int_{1}^{2} \int_{1}^{u^{2}} \frac{u^{2}}{2 v} d v d u
\end{gathered}
$$

Note: In this problem it is easier to compute the Jacobian 'backwards':
$\frac{\partial(u, v)}{\partial(x, y)}=\operatorname{det} y x \frac{1}{y}-\frac{x}{y^{2}}=-\frac{x}{y}-\frac{x}{y}=-2 \frac{x}{y}=-2 v \frac{\partial(x, y)}{\partial(u, v)}=\left[\frac{\partial(u, v)}{\partial(x, y)}\right]^{-1}=-\frac{1}{2 v}$

