\qquad

Exam I September 24, 1992
Section: \qquad

Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this answer sheet. There are 15 multiple choice questions worth 6 points each. You start with 10 points.

Calculate the distance between the points $(2,1,-1)$ and $(5,3,-7) .7 \sqrt{11} \sqrt{62} \sqrt{77} 6$
Find the area of the parallelogram with vertices at the points $(0,0,0),(3,1,2),(1,-1,4)$, and $(4,0,6)$. 12.32911 .54313 .97210 .08514 .151

Which of the following vectors is perpendicular to $\check{=} 3 \subset-2 \supset+5.3 \subset+2 \supset-2 \subset-3 \supset 5 \subset+3$ $\subset+\supset-\subset-\supset-6$

Find the projection of the vector $v=5 \subset-\supset+3$ on the vector $w=\subset+\supset-. \frac{1}{3} \subset+\frac{1}{3} \supset-\frac{1}{3} 1$ $\subset+\supset-5 \subset-\supset+3 \frac{5}{3} \subset-\frac{1}{3} \supset+$

Let $=-3 \subset+\supset+4$ and $\equiv 4 \subset-$. Compute $\times .-1+13 \mathrm{~J}-4-16-12 \mathrm{\imath}-44 \mathrm{\imath}+16 \mathrm{\jmath}-3 \mathrm{l}+13 \mathrm{~J}-$
Compute the volume of the box (parallelepiped) determined by the vectors $=\subset+\supset+, \equiv 2 \supset-$, and $\bar{\varsigma} \subset+\supset .837612$

Find the point where the line $x=-7+2 t, y=8-t, z=3+5 t$ intersects the plane $x-y+2 z=4$. $(-5,7,8)(-3,6,13)(-9,9,11)(-11,10,-2)(1,4,7)$

Find the equation of the plane perpendicular to the line $x=1-t, y=1+2 t, z=-4 t$ passing through the point $(1,1,1) . x-2 y+4 z=3 x+y+z=32 x-y-4 z=-3 x+y=2-x+2 y+4 z=0$

Calculate the distance from the point $(0,10,0)$ to the plane $x+y-z=0.5 .7710 .006 .849 .6711 .21$
Determine the equation of the plane through the point $(2,1,0)$ that is parallel to the vectors $(-1,-1,2)$ and $(-2,1,1) . x+y+z=3 x-y-z=13 x+3 y+z=9-3 x+y-3 z=-53 x-3 y+z=3$

Find the equation of the line tangent to the curve $(t)=t^{3} \subset-\left(t^{2}+1\right) \supset+e^{2 t}$ at the point $(0,-1,1)$. $x=0, y=-1, z=1+2 t x=0, y=0, z=2 t x=3 t^{2}, y=-2 t, z=2 e^{2 t} x=3 t^{2}, y=-1-2 t, z=1+2 e^{2 t}$ $x=3 t, y=-1-2 t, z=1+2 t$

Which of the following represents the curve traced by $(t)=t \subset+2 \sin (t) \supset+3 \cos (t), 0 \leq t \leq 6 \pi$?

A particle's velocity is given by $(t)=-t^{2} \subset+t \supset+, t \geq 0$. If the particle is at the point $(1,2,0)$ at time $t=1$, where is it at time $t=2 ?\left(-\frac{4}{3}, \frac{7}{2}, 1\right)\left(-\frac{8}{3}, 2,2\right)\left(\frac{2}{3}, \frac{5}{2}, 1\right)\left(-\frac{5}{3}, 4,2\right)\left(-\frac{1}{3}, \frac{1}{2}, 0\right)$

Calculate the length of the curve $(t)=3 t \subset+t^{2} \supset+\frac{4}{3} \sqrt{3} t^{3 / 2}$ from $t=0$ to $t=3.181614129$
Find the unit normal vector (t) to the curve $(t)=2 \cos (t) \subset-2 \sin (t) \supset+\sqrt{5} t . \quad(t)=-\cos (t) \subset$ $+\sin (t) \supset(t)=-\frac{2}{3} \cos (t) \subset+\frac{2}{3} \sin (t) \supset+\frac{\sqrt{5}}{3}(t)=-\frac{2}{3} \sin (t) \subset-\frac{2}{3} \cos (t) \supset+\frac{\sqrt{5}}{3}(t)=\frac{-2 \sin (t) \subset-2 \cos (t) \supset}{\sqrt{2 \sin (t)+2 \cos (t)+\sqrt{5}}}$ $(t)=\frac{-2 \cos (t) \subset-2 \sin (t) \supset+\sqrt{5}}{\sqrt{2 \cos (t)+2 \sin (t)+\sqrt{5}}}$

