Math 225:	Calculus	III
-----------	----------	-----

Exam II October 29, 1992

Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this answer sheet. There are 15 multiple choice questions worth 6 points each. You start with 10 points.

Let $f(x, y, z) = \frac{\ln(xy^2)}{z^3}$. Compute $f_{zx}(1, 2, 3)$. $-\frac{1}{27} - \frac{2}{\ln(2)81} 0 - \frac{2}{\ln(2)27} - \frac{1}{3}$ Compute the limit $\lim_{(x,y)\to(0,0)} \frac{xy^3}{x^4+y^4}$. does not exist $\frac{3}{8} \frac{1}{8} \propto 0$

Calculate the gradient of the function $f(x, y, z) = x^2y - z^2x + yz$. $(2xy - z^2) \subset +(x^2 + z) \supset +(y - 2xz) = 2xy - z^2 + x^2 + z + y - 2xz$ $2xy - z^2 + y + z$ $x^2y \subset -z^2x \supset +yz$ $2xy \subset -z^2 \supset +(y + z) = 2xy - z^2 + y + z$

Find the direction in which the function f(x, y) = xy - x/y is increasing most rapidly at the point (5, 3). $\frac{8}{3} \subset +\frac{50}{9} \supset 3 \subset -\frac{5}{9} \supset \frac{74}{9} \stackrel{24}{5} \subset +\frac{78}{25} \supset \frac{40}{3}$ Calculate the derivative of $f(x, y, z) = xy - z^2$ in the direction of $\subset - \supset +2$ at the point (3, 4, 1). $-\frac{3}{\sqrt{6}}$

Calculate the derivative of $f(x, y, z) = xy - z^2$ in the direction of $\subset - \supset +2$ at the point (3, 4, 1). $-\frac{3}{\sqrt{6}}$ $4 \subset +3 \supset -2 -3$ 1 $\frac{4}{\sqrt{6}} \subset -\frac{3}{\sqrt{6}} \supset -\frac{4}{\sqrt{6}}$

Determine the critical points of the function $g(u, v) = u^2 v - 27v^3 - 2u$. $(3, \frac{1}{3}), (-3, -\frac{1}{3}), (3, \frac{1}{3}), (-3, \frac{1}{3}), (3, -\frac{1}{3}), (3, -\frac{1}{3}), (-3, -\frac{1}{3})$ $(9, \frac{1}{9}), (-9, -\frac{1}{9}), (0, \frac{1}{9}), (0, -\frac{1}{9}), (0, 0), (1, 1), (-1, -1), (1, 1), (9, 1), (-1, -1), (-9, -1)$

Which of the following statements is true about the function $f(x, y) = e^{x^2 - 3xy + y^2}$. f(x, y) has a critical point at (1, -1) f(x, y) has a local maximum at (0, 0) f(x, y) has a local minimum at (0, 0) f(x, y) has a saddle point at (0, 0) none of the above

Find the minimum value of the function $f(x, y) = x^2 - 2xy + y - x$ in the square region $0 \le x \le 2$, $-1 \le y \le 1$. $-\frac{5}{4} - \frac{1}{4} - 2 - 1 - \frac{1}{2}$

Determine the maximum value of the function f(x, y) = x - 2y subject to the constraint $x^2 + 4y^2 = 4$. 2.828 1.000 1.436 2.000 3.936

Which of the following sets of equations must be solved to find the extreme values of the function $f(x, y) = x^4y + x^2y + xy^3$ subject to the constraint $x^4 + 4xy + y^4 = 16$ $4x^3y + 2xy + y^3 = \lambda(4x^3 + 4y)$ $x^4 + x^2 + 3xy^2 = \lambda(4x + 4y^3)$ $x^4 + 4xy + y^4 = 16$

$$\begin{aligned} 4x^3y + 2xy + y^3 &= \lambda(4x^3 + 4y) \\ x^4 + x^2 + 3xy^2 &= \lambda(4x + 4y^3) \\ 4x^3 + 4y + 4y^3 &= 0 \end{aligned}$$

$$4x^{3} + 2xy + y^{3} = \lambda(4x^{3} + 4y^{3})$$

$$x^{2} + 3xy^{2} = \lambda(4x + 4y^{3})$$

 $\begin{array}{l} 4x^3 + 2xy = \lambda(4x^3 + 4y) \\ x^2 + 3xy^2 = \lambda(4x + 4y^3) \\ x^4 + 4xy + y^4 = 16 \end{array}$

$$\begin{array}{l} 4x^3 + x^4 + 2xy + x^2 + 3y^2 = \lambda(4x^3 + 4y) \\ x^4 + 4x^3y + x^2 + 3xy^2 = \lambda(4x + 4y^3) \\ x^3 + x + y + y^3 = 4 \end{array}$$

Find the equation of the plane tangent to the graph of $g(x, y) = x^3y - y^2 + x$ at the point (1, 1, 1). $4x - y - z = 2 \ 4x - y = 3 \ x + y + z = 3 \ x + y = 2 \ (1 + 3x^2y) + (x^3 - 2y) + z = 4$

Let $z = x^2 \cos(y + x)$. Suppose x = g(u, v), y = h(u, v) and at the point (u, v) = (0, 0), $g(0, 0) = \pi$, h(0, 0) = 0, and:

$$\dot{\mathbf{x}}/du = 3$$
, $\dot{\mathbf{x}}/dv = -1$, $\dot{\mathbf{y}}/du = -2$, $\dot{\mathbf{y}}/dv = -2$

 $\begin{array}{l} \mbox{Compute $\dot{\mathbf{z}}/du$ at $(u,v)=(0,0)$.} \\ -6\pi \ 0 \ 4\pi \ -2\pi \ 1 \end{array}$

Name:_ Section:_ A certain type of salt crystal is being grown in a chemistry lab. The crystal is the shape of a rectangular box. After 1 hour, the crystal is observed to be 1 mm wide, 2 mm deep, and 2.5 mm high with the width, depth, and height increasing at a rate of 0.2 mm, 0.4 mm, and 0.5 mm per hour, respectively. How fast is the volume of the crystal changing at that moment. 3.0 mm^3 per hour 2.25 mm^3 per hour 1.8 mm^3 per hour 1.1 mm^3 per hour 2.75 mm^3 per hour

Determine which of the following plots represents the level curves of the function $f(x,y) = 2x^2 +$

 $4y^2$.

Which of the following plots represents the graph of the function $f(x,y) = 2y^3 + 3x^2 - 6xy$