Math 225: Calculus III

Final Exam December 14, 1992

Name: \qquad
Section: \qquad

Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this answer sheet. There are 25 multiple choice questions worth 6 points each.

Use the Divergence Theorem to calculate the flux integral $\Sigma \cdot d S$ where $=y z^{2} \subset+z x^{2} \supset+x y^{2}, \Sigma$ is the sphere $x^{2}+y^{2}+z^{2}=9$, and is the outward unit normal vector to Σ.
$02336 \pi 4 \pi^{2}$
Use Stokes' Theorem to calculate the flow integral \int. d where is the boundary of the rectangle with vertices $(0,0,1),(1,0,1),(1,1,0),(0,1,0)$ in the plane $y+z=1$ and $=(x+y) \subset+(y+z) \supset+(x+z)$.
$-2-1012$
Let $=x \subset+3 y \supset-2 x z$ and let Σ be the portion of the cylinder $y^{2}+z^{2}=1$ above the $x y$-plane between $x=0$ and $x=1$. Determine which of the following integrals gives the value of the flux integral $\Sigma \cdot d \sigma$ where is the upward unit normal vector to Σ.
$\int_{-1}^{1} \int_{0}^{1} 3 y^{2}\left(1-y^{2}\right)^{-1 / 2}-2 x\left(1-y^{2}\right)^{1 / 2} d x d y \int_{0}^{2 \pi} \int_{0}^{1} 3 r^{3}\left(1-r^{2}\right)^{1 / 2} r d r d \theta \int_{-1}^{1} \int_{0}^{1} 3 x^{2}\left(1-y^{2}\right)^{1 / 2}-2 y(1-$ $\left.y^{2}\right)^{3 / 2} d x d y \int_{0}^{2 \pi} \int_{0}^{1} 3 r^{2} \cos (\theta)\left(1-r^{2}\right)^{3 / 2} d r d \theta \int_{0}^{1} \int_{0}^{1} 3 y\left(1-y^{2}\right)^{1 / 2}-2 x^{2}\left(1-y^{2}\right)^{-1 / 2} d x d y$

Calculate the surface area of the portion of the paraboloid $x^{2}+y+z^{2}=4$ in the first octant. 9.0410 .21 13.378 .625 .79

Let be the curve parameterized by $(t)=\left(t^{3}-1\right) \subset+t^{2} \supset+t, 0 \leq t \leq 2$. Compute the flow integral $\int(y-x) d x+(z-y) d y+2 x z d z$.
1.334 .56 .008 .672 .50

Let be the directed line segment from $(-1,2,-1)$ to $(5,0,2)$. Calculate the line integral $\int(x+y+z) d s$. $24.5 \sqrt{15} / 2 \sqrt{31} / 248.572 .5$

Let $(x, y, z)=\frac{x}{y} \subset+\frac{y}{z} \supset+\frac{z}{x}$. Compute $\div \frac{x z+x y+y z}{x y z} \frac{y}{z^{2}} \subset+\frac{z}{x^{2}} \supset+\frac{x}{y^{2}} \frac{x^{2} y+y^{2} z+x z^{2}}{x^{2} y^{2} z^{2}} \frac{1}{y} \subset+\frac{1}{z} \supset+\frac{1}{x}$ $\frac{-x}{y^{2}}-\frac{y}{z^{2}}-\frac{z}{x^{2}}$

Determine which of the following vector fields is depicted below.
$\frac{(-y \subset+x \supset)}{\sqrt{x^{2}+y^{2}}} \frac{x}{5} \subset+\frac{y}{5} j \frac{y}{5} \subset-\frac{x}{5} \supset \frac{x \subset-y \supset}{\sqrt{x^{2}+y^{2}}} x^{2} \subset+y^{2} \supset$
Let R be the region bounded by the lines $x+2 y=3, x+2 y=5,2 x-y=1$, and $2 x-y=2$. Use a substitution to calculate the integral ${ }_{R}(x-y) d A$.
$1 / 251 / 161 / 51 / 41 / 12$
Which of the following integrals gives the volume of the portion of the solid sphere $x^{2}+y^{2}+z^{2} \leq 4$ above the $x y$-plane and below the cone $x^{2}+y^{2}=3 z^{2}$.
$\int_{0}^{2 \pi} \int_{\pi / 3}^{\pi / 2} \int_{0}^{2} \rho^{2} \sin (\phi) d \rho d \phi d \theta \int_{0}^{2 \pi} \int_{0}^{\pi / 2} \int_{0}^{2} \rho^{2} \sin (\phi) d \rho d \phi d \theta \int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{\sqrt{4-r^{2}}} r d z d r d \theta \int_{0}^{\pi / 2} \int_{0}^{1} \int_{0}^{\sqrt{4-r^{2}}} r d z d r d \theta$ $\int_{0}^{\pi / 2} \int_{\pi / 6}^{\pi} \int_{0}^{2} \rho^{2} \sin (\phi) d \rho d \phi d \theta$

A mound of earth has the shape of an inverted paraboloid $z=1-x^{2}-y^{2}$. The density of material in the mound is given by $\delta(x, y, z)=1-z$. Compute the total mass of the mound.
$\pi / 3 \pi / 2 \pi / 4 \pi / 9 \pi / 6$
Find the average value of the function $f(x, y)=x^{2}$ over the triangular region bounded by the lines $y=x, y=0$ and $x=2$.

24613
Compute the area of the region inside the cardioid $r=3+2 \cos (\theta)$.
$11 \pi 9 \pi 6 \pi \frac{16}{3} \pi \frac{32}{3} \pi$
Compute $\int_{0}^{1} \int_{x}^{x^{2}} \int_{0}^{y-x}(x+y) d z d y d x$ 1/70 1/35 1/15 1/105 1/210
Rewrite the integral $\int_{1}^{4} \int_{4 / x^{2}}^{(21-5 x) / 4} f(x, y) d y d x$ by reversing the order of integration.
$\int_{1 / 4}^{4} \int_{2 / \sqrt{y}}^{(21-4 y) / 5} f(x, y) d x d y \int_{4 / x^{2}}^{(21-5 x) / 4} \int_{1}^{4} f(x, y) d x d y \int_{1}^{4} \int_{4 / y^{2}}^{(21-4 y) / 5} f(x, y) d x d y \int_{0}^{2} \int_{2 / y}^{(21-5 y) / 4} f(x, y) d x d y$ $\int_{0}^{2} \int_{2 / \sqrt{y}}^{(21-5 y) / 4} f(x, y) d x d y$

Find the minimum value of the function $f(x, y)=x-y$ on the ellipse $4 x^{2}+y^{2}=1$.
$-1.12-2.23-1.00-0.50-1.73$
Which of the following statements applies to the function $f(x, y)=x^{3}-3 x^{2}+3 y^{2}$.
$(0,0)$ is not a critical point of $f f$ has a saddle point at $(2,0) f$ has a local maximum at $(0,0) f$ has a local minimum at $(2,0)$ none of the above

Find all of the critical points of the function $f(x, y)=x^{2}\left(2-3 x^{2}\right)+12 x y\left(x^{2}-1\right)$.
$(1,1 / 3),(-1,-1 / 3),(0,0)(1,1 / 3),(1,-1 / 3),(-1,1 / 3),(-1,-1 / 3)(1,-1 / 3),(-1,1 / 3),(0,0)(1,1 / 3)$, $(-1,1 / 3),(-1,-1 / 3),(0,0)(1,1 / 3),(1,-1 / 3),(0,0)$

Find the maximum value of $f(x, y)=e^{x y-x-2 y}$ on the region $x+y \leq 7, x \geq 0, y \geq 0$.
$e^{2} e e^{-1} 1 e^{4}$
Determine the equation of the plane tangent to the surface $x^{2}-y z=4$ at the point $(2,0,0)$.
$x=22 x-y-z=02 x-y-z=44 x-y=04 x-y=8$
Find the direction in which the function $f(x, y, z)=x^{3} y-y^{2} z+z^{4}$ increases most rapidly at the point $(1,2,-1)$.
$6 \subset+5 \supset-83 \subset-2 \supset+43 \subset-\supset+36 \subset+4 \supset-4$
Let $f(x, y)=x^{3} y^{2}$. If $x=r \cos (\theta)$ and $y=r \sin (\theta)$, determine which of the expressions below gives $\mathrm{f} / d \theta$.
$r x^{2} y(2 x \cos (\theta)-3 y \sin (\theta)) r x^{2} y(3 y \cos (\theta)+2 x \sin (\theta))-3 r^{5} \cos ^{2}(\theta) \sin ^{3}(\theta) 2 r^{5} \cos ^{4}(\theta) \sin (\theta) 6 r x^{2} y(\sin (\theta)-$ $\cos (\theta)$

Determine the equation of the line perpendicular to the plane $2 x-3 y+4 z=5$ through the point $(1,0,0)$.
$x=1+2 t, \quad y=-3 t, \quad z=4 t x=2+t, \quad y=-3+t, \quad z=4+t x=1+t, \quad y=t, \quad z=t$ $x=1+t / 2, \quad y=-t / 3, \quad z=t / 4 x=5-4 t, \quad y=-3 t+3, \quad z=4 t-4$

Compute the angle in radians between the lines $x=2-t, y=3-2 t, z=4-3 t$, and $x=1+t, y=4-t, z=4 t$.
2.340 .791 .051 .672 .09

A charged particle with mass $m=2 \times 10^{-2}$ moves under the influence of a changing electrical force, $(t)=(1-t) \subset+t^{2} \supset(t$ in seconds $)$. If the particle is initially at rest at the origin, determine the particle's position after 2 seconds.

$$
(100 \subset+200 \supset) / 3(2 \subset+4 \supset) / 3(50 \subset+100 \supset) / 3(\subset+8 \supset) / 6(50 \subset+400 \supset) / 6
$$

