Math 225: Calculus III
Exam I February 3, 1994

Name:
Section:

Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this answer sheet. There are 15 multiple choice questions worth 6 points each. You start with 10 points.

Particle a has position vector $(t)=t^{2} \subset+t \supset-$ and particle b has position vector $(t)=t \subset-t^{3} \supset+t$.
Determine how fast b appears to be moving from a 's point of view at time $t=1$? $3 \sqrt{2} 2 \sqrt{3} 5 \sqrt{4 t^{2}+1} \sqrt{5}$
Find the area of the triangle with vertices at the points $(0,0,0),(1,1,2)$, and $(1,-1,4)$. $\sqrt{11} \frac{11}{2} \sqrt{2} 84$ $\sqrt{2}$

Find the point where the line $x=2-t, y=1-2 t, z=-2+3 t$, intersects the plane $x-y+z=3$. $(1,-1,1)\left(\frac{1}{2}, \frac{3}{2}, \frac{3}{2}\right)\left(\frac{7}{4}, \frac{1}{2},-\frac{5}{4}\right)\left(\frac{5}{4},-\frac{3}{2}, \frac{1}{4}\right)(2,1,-2)$

Find the projection of the vector $\check{=2 \subset-4 \supset+\text { on the vector }=\subset+\supset-.-\subset-\supset+2 \subset-4 \supset-~-~-~}$ $\frac{1}{7} \subset+\frac{1}{7} \supset-\frac{1}{7}-2 \subset+4 \supset-\frac{2}{7} \subset-\frac{4}{7} \supset+\frac{1}{7}$

Find the equation of the plane perpendicular to the line $x=7-3 t, y=5+4 t, z=-3-t$ through the point $(1,0,1) .3 x-4 y+z=43 x-4 y+z=0-3 x+4 y-z=6-3(x-7)+4(y-5)-(z+3)=0$ $3 x+4 y-z=9$

Compute the volume of the box (parallelepiped) determined by the vectors $=2 \subset-\supset+3, \equiv 5 \subset+\supset$, and $=2 \supset-.2315306026$

Find the point on the line $x=-1+t, y=1-t, z=t$ closest to the origin. $\left(-\frac{1}{3}, \frac{1}{3}, \frac{2}{3}\right)\left(0, \frac{1}{2}, \frac{1}{2}\right)(0,0,1)$ $(-1,1,0)\left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)$

Calculate the distance from the point $(2,-1,5)$ to the plane $x+2 y-z=1$.
$\sqrt{6} \frac{1}{\sqrt{6}} \sqrt{27} 6 \frac{1}{\sqrt{27}}$
Find a vector perpendicular to the vectors $=-3 \subset+5 \supset+9$ and $\equiv 7 \subset+$
$5 \subset+66 \supset-354 \subset+52 \supset-28-3 \subset-39 \supset+21-2 \subset-26 \supset+141 \subset+13 \supset-7$
Determine the equation of the line tangent to the curve $(t)=(1+t) \subset+\left(2+t^{2}\right) \supset+\left(3-t^{3}\right)$ at the point $(0,3,4) . x=t, y=3-2 t, z=4-3 t x=1, y=2 t, z=-3 t^{2} x=1, y=3+2 t, z=4-3 t^{2} x=1+t$, $y=2-2 t, z=3-3 t x=1+t, y=2+2 t, z=4-3 t$

The total force acting on a particle of mass $\underset{\sim}{2}$ at time t is given by $(t)=8 e^{2 t} \subset+8 e^{-2 t} \supset$. If the particle starts at the origin with initial velocity $0=2 \subset-2 \supset+3$, find the position of the particle at time $t=1$.
$\left(e^{2}-1\right) \subset+\left(e^{-2}-1\right) \supset+3\left(e^{2}+2\right) \subset+\left(e^{-2}-2\right) \supset+3\left(e^{2}+1\right) \subset+\left(e^{-2}-3\right) \supset+3 e^{2} \subset+e^{-2} \supset+3$ $\left(e^{2}+1\right) \subset-\left(e^{-2}+1\right) \supset+3$

Determine which of the following curves is not smooth at some point in its domain.
$(t)=t^{3} \subset+\cos (t) \supset(t)=t^{3} \subset+\sin (t) \supset(t)=t^{3} \subset+t^{2} \supset+t(t)=\left(t^{3}-3 t^{2}\right) \subset+\left(t^{2}-2 t\right) \supset+t^{2}$ $(t)=(t-1)^{3} \subset+t^{2} \supset$

Compute the approximate angle in radians bewteen the vectors $=3 \subset-j+2$ and $\equiv 2 \subset+2 \supset+$.
1.011 .481 .720 .791 .34

Determine which of the following integrals gives the length of the curve

$$
(t)=t \cos (\pi t) \subset+t \sin (\pi t) \supset+, \quad 0 \leq t \leq 1
$$

$\int_{0}^{1} \sqrt{1+\pi^{2} t^{2}} d t \int_{0}^{1} \sqrt{1+\pi t} d t \int_{0}^{1} \sqrt{(1+\pi t) \cos (\pi t)+(1-\pi t) \sin (\pi t)} d t \int_{0}^{1} \sqrt{(1+\pi t)^{2}+(1-\pi t)^{2}} d t \int_{0}^{1} \sqrt{1+(1+\pi t)^{2}}$
Determine the unit normal vector (t) of a curve given that its unit tangent is

$$
\begin{gathered}
(t)=\frac{t^{2}}{t^{2}+1} \subset+\frac{\sqrt{2} t}{t^{2}+1} \supset+\frac{1}{t^{2}+1} \\
(t)=\frac{\sqrt{2} t}{t^{2}+1} \subset+\frac{1-t^{2}}{t^{2}+1} \supset-\frac{\sqrt{2} t}{t^{2}+1}(t)=\frac{2 t}{\left(t^{2}+1\right)^{2}} \subset+\frac{\sqrt{2}\left(1-t^{2}\right)}{\left(t^{2}+1\right)^{2}} \supset-\frac{2 t}{\left(t^{2}+1\right)^{2}}(t)=\frac{1}{2} t^{2} \subset+\sqrt{2} t \supset+\ln (t) \\
(t)=\frac{-2 t^{2}}{\left(t^{2}+1\right)^{2}} \subset+\frac{2 \sqrt{2} t^{2}}{\left(t^{2}+1\right)^{2}} \supset-\frac{2 t}{\left(t^{2}+1\right)^{2}}(t)=\frac{1}{t^{2}+1} \subset+\frac{\sqrt{2} t}{t^{2}+1} \supset-\frac{t^{2}}{t^{2}+1}
\end{gathered}
$$

