
Math 225: Calculus III Name:

Exam I February 3, 1994 Section:

Record your answers to the multiple choice problems by placing an × through one letter for each problem
on this answer sheet. There are 15 multiple choice questions worth 6 points each. You start with 10 points.

Particle a has position vector (t) = t2 ⊂ +t ⊃ − and particle b has position vector (
¯
t) = t ⊂ −t3 ⊃ +t.

Determine how fast b appears to be moving from a’s point of view at time t = 1? 3
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Find the area of the triangle with vertices at the points (0, 0, 0), (1, 1, 2), and (1,−1, 4).
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Find the point where the line x = 2 − t, y = 1 − 2t, z = −2 + 3t, intersects the plane x − y + z = 3.
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Find the projection of the vector =̌2 ⊂ −4 ⊃ + on the vector =⊂ + ⊃ −. − ⊂ − ⊃ + 2 ⊂ −4 ⊃ −
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Find the equation of the plane perpendicular to the line x = 7 − 3t, y = 5 + 4t, z = −3 − t through

the point (1, 0, 1). 3x − 4y + z = 4 3x − 4y + z = 0 −3x + 4y − z = 6 −3(x − 7) + 4(y − 5) − (z + 3) = 0
3x + 4y − z = 9

Compute the volume of the box (parallelepiped) determined by the vectors = 2 ⊂ − ⊃ +3, =
¯
5 ⊂ + ⊃,

and =̧2 ⊃ −. 23 15 30 60 26
Find the point on the line x = −1 + t, y = 1− t, z = t closest to the origin. (− 1
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Calculate the distance from the point (2,−1, 5) to the plane x + 2y − z = 1.√
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Find a vector perpendicular to the vectors = −3 ⊂ +5 ⊃ +9 and =

¯
7 ⊂ +

5 ⊂ +66 ⊃ −35 4 ⊂ +52 ⊃ −28 −3 ⊂ −39 ⊃ +21 −2 ⊂ −26 ⊃ +14 1 ⊂ +13 ⊃ −7
Determine the equation of the line tangent to the curve (t) = (1 + t) ⊂ +(2 + t2) ⊃ +(3 − t3) at the

point (0, 3, 4). x = t, y = 3− 2t, z = 4− 3t x = 1, y = 2t, z = −3t2 x = 1, y = 3 + 2t, z = 4− 3t2 x = 1 + t,
y = 2− 2t, z = 3− 3t x = 1 + t, y = 2 + 2t, z = 4− 3t

The total force acting on a particle of mass 2 at time t is given by (t) = 8e2t ⊂ +8e−2t ⊃. If the particle
starts at the origin with initial velocity ˇ0 = 2 ⊂ −2 ⊃ +3, find the position of the particle at time t = 1.

(e2 − 1) ⊂ +(e−2 − 1) ⊃ +3 (e2 + 2) ⊂ +(e−2 − 2) ⊃ +3 (e2 + 1) ⊂ +(e−2 − 3) ⊃ +3 e2 ⊂ +e−2 ⊃ +3
(e2 + 1) ⊂ −(e−2 + 1) ⊃ +3

Determine which of the following curves is not smooth at some point in its domain.
(t) = t3 ⊂ +cos(t) ⊃ (t) = t3 ⊂ +sin(t) ⊃ (t) = t3 ⊂ +t2 ⊃ +t (t) = (t3 − 3t2) ⊂ +(t2 − 2t) ⊃ +t2

(t) = (t− 1)3 ⊂ +t2 ⊃
Compute the approximate angle in radians bewteen the vectors = 3 ⊂ −j + 2 and =

¯
2 ⊂ +2 ⊃ +.

1.01 1.48 1.72 0.79 1.34
Determine which of the following integrals gives the length of the curve

(t) = t cos(πt) ⊂ +t sin(πt) ⊃ +, 0 ≤ t ≤ 1
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Determine the unit normal vector (t) of a curve given that its unit tangent is
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