Name: \qquad
Exam II March 17, 1994
Section: \qquad

Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this answer sheet. There are 14 multiple choice questions worth 6 points each. You start with 16 points.

Find the limit $\lim _{(x, y) \rightarrow(0,0)}\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right)^{2}$. does not exist 0142
Let $f(x, y)=\cos \left(x^{2} y\right)$. Compute $f_{x y}(2, \pi) .-16 \pi 8 \pi-4 \pi \pi 0$
A triangular sheet of glass is expanding. When the base is 2 inches and the height is 4 inches, the base is increasing at the rate of $0.25 \mathrm{in} / \mathrm{hr}$ and the height at $0.5 \mathrm{in} / \mathrm{hr}$. At what rate is the area of the triangle increasing? $1.0 \mathrm{in}^{2} / \mathrm{hr} 0.75 \mathrm{in}^{2} / \mathrm{hr} 1.5 \mathrm{in}^{2} / \mathrm{hr} 1.75 \mathrm{in}^{2} / \mathrm{hr} 2.0 \mathrm{in}^{2} / \mathrm{hr}$

Suppose that z is a function of u and v, and that $u=e^{x y}$ and $v=\frac{x}{y}$. If $z_{u}(e, 1)=3$ and $z_{v}(e, 1)=1$, find $\mathrm{z} / d y$ when $x=1$ and $y=1$. $3 e-110 e-3-e$

Which of the following represents the graph of the function $f(x, y)=12 y-y^{3}-3 x^{2}$?

Compute the derivative of $f(x, y)=x^{2} y-y^{2}-2$ in the direction $3 \subset+4 \supset$ at the point $(2,1) .4$ $12 \subset+8 \supset 4 \subset+2 \supset 20$ does not exist

Find the direction in which the function $f(x, y)=x^{3}-3 x y^{2}$ increases most rapidly at the point $(1,-1)$. $\supset \subset 3 x^{2} \subset-2 x y \supset\left(x^{2}-y\right) \subset-x \supset 2 \subset-\supset$

Determine the equation of the plane tangent to the paraboloid $z=9-4 x^{2}-y^{2}$ at the point $(1,1,4)$. $8 x+2 y+z=14 x+y+4 z=184 x+2 y+z=10 x+8 y+4 z=25 x+4 y+z=9$

Determine the critical points of the function $f(x, y)=3 x^{2}-3 x y^{2}+2 y^{3} .(0,0),(2,2)(0,0),(2,0),(2,2)$ $(0,0),(2,0)(0,0),(2,2),(-2,2)(0,0),(2,0),(2,2),(-2,2)$

The function $f(x, y)=2 x^{3}-6 x+2 y^{3}-3 x y^{2}$ has a critical point at $(\sqrt{2}, \sqrt{2})$. Use the Second Partials Test to determine which of the following is true at this point: f has a relative minimum f has a relative maximum f has a saddle point test is inconclusive none of the above

Find the maximum of the function $f(x, y)=y^{3}+3 x^{2} y$ in the region $x^{2}+y^{2} \leq 4.8 \sqrt{2} 801616 \sqrt{2}$

Determine which of the following sets of equations must be solved to find the extreme values of the function $f(x, y)=x^{3} y+y^{2} x+x y^{4}$ subject to the constraint $x^{4}+4 x y+y^{4}=4.3 x^{2} y+y^{2}+y^{4}=\lambda\left(4 x^{3}+4 y\right)$

$$
x^{3}+2 x y+4 x y^{3}=\lambda\left(4 x+4 y^{3}\right)
$$

$$
x^{4}+4 x y+y^{4}=4
$$

$3 x^{2} y+y^{2}+y^{4}=\lambda\left(4 x^{3}+4 y^{3}\right) \quad 3 x^{2} y+y^{2}+y^{4}=\lambda\left(4 x^{3}+4 y+4 y^{3}\right) 3 x^{2} y+y^{2}+y^{4}=\lambda\left(4 x^{3}+4 y^{3}\right) \quad 3 x^{2} y+y^{2}+y^{4}=\lambda(4 x$ $x^{3}+2 x y+4 x y^{3}=\lambda\left(4 x^{3}+4 y^{3}\right) 3 x^{2}+2 y+4 y^{3}=\lambda\left(4 x+4 y^{3}\right) \quad x^{3}+2 x y+4 x y^{3}=\lambda\left(4 x^{3}+4 y^{3}\right) x^{3}+2 x y+4 x y^{3}=\lambda(x)$ $4 x^{3}+4 y+4 y^{3}=0 \quad x^{4}+4 x y+y^{4}=4$

Let R be the triangle in the plane with vertices at the points $(0,0),(0,1)$, and (1,1). Compute the double integral ${ }_{R} x+y^{2} d A$. $\frac{5}{12} \frac{6}{15} \frac{1}{4} \frac{1}{3} \frac{2}{5}$

Reverse the order of integration of the iterated integral $\int_{0}^{1} \int_{\sqrt{y}}^{1} f(x, y) . \int_{0}^{1} \int_{0}^{x^{2}} f(x, y) \int_{1}^{\sqrt{x}} \int_{0}^{1} f(x, y)$ $\int_{0}^{1} \int_{\sqrt{x}}^{1} f(x, y) \int_{\sqrt{y}}^{1} \int_{0}^{1} f(x, y) \int_{0}^{1} \int_{x^{2}}^{1} f(x, y)$

Find the centroid of the region between the y-axis and $x=1-y^{4}$. $\left(\frac{4}{9}, 0\right)\left(\frac{32}{45}, 0\right)\left(\frac{5}{8}, 0\right)\left(\frac{3}{8}, 0\right)\left(\frac{4}{5}, 0\right)$

