Math 225: Calculus III
 Name:_____

 Exam II
 March 17, 1994

Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this answer sheet. There are 14 multiple choice questions worth 6 points each. You start with 16 points.

Find the limit $\lim_{(x,y)\to(0,0)} \left(\frac{x^2-y^2}{x^2+y^2}\right)^2$. does not exist 0 1 4 2 Let $f(x,y) = \cos(x^2y)$. Compute $f_{xy}(2,\pi)$. $-16\pi \ 8\pi \ -4\pi \ \pi \ 0$

A triangular sheet of glass is expanding. When the base is 2 inches and the height is 4 inches, the base is increasing at the rate of 0.25 in/hr and the height at 0.5 in/hr. At what rate is the area of the triangle increasing? $1.0 \text{ in}^2/\text{hr} 0.75 \text{ in}^2/\text{hr} 1.75 \text{ in}^2/\text{hr} 2.0 \text{ in}^2/\text{hr}$

Suppose that z is a function of u and v, and that $u = e^{xy}$ and $v = \frac{x}{y}$. If $z_u(e, 1) = 3$ and $z_v(e, 1) = 1$, find z/dy when x = 1 and y = 1. $3e - 1 \ 1 \ 0 \ e - 3 \ -e$

Which of the following represents the graph of the function $f(x, y) = 12y - y^3 - 3x^2$?

Compute the derivative of $f(x,y) = x^2y - y^2 - 2$ in the direction $3 \subset +4 \supset$ at the point (2,1). 4 $12 \subset +8 \supset 4 \subset +2 \supset 20$ does not exist

Find the direction in which the function $f(x, y) = x^3 - 3xy^2$ increases most rapidly at the point (1, -1). $\supset \subset 3x^2 \subset -2xy \supset (x^2 - y) \subset -x \supset 2 \subset - \supset$

Determine the equation of the plane tangent to the paraboloid $z = 9 - 4x^2 - y^2$ at the point (1, 1, 4). 8x + 2y + z = 14 x + y + 4z = 18 4x + 2y + z = 10 x + 8y + 4z = 25 x + 4y + z = 9

Determine the critical points of the function $f(x, y) = 3x^2 - 3xy^2 + 2y^3$. (0,0), (2,2) (0,0), (2,0), (2,2) (0,0), (2,0), (2,2), (-2,2) (0,0) (0,

The function $f(x, y) = 2x^3 - 6x + 2y^3 - 3xy^2$ has a critical point at $(\sqrt{2}, \sqrt{2})$. Use the Second Partials Test to determine which of the following is true at this point: f has a relative minimum f has a relative maximum f has a saddle point test is inconclusive none of the above

Find the maximum of the function $f(x,y) = y^3 + 3x^2y$ in the region $x^2 + y^2 \le 4$. $8\sqrt{2} \ge 0.16 \ 16\sqrt{2}$

Determine which of the following sets of equations must be solved to find the extreme values of the function $f(x, y) = x^3y + y^2x + xy^4$ subject to the constraint $x^4 + 4xy + y^4 = 4$. $3x^2y + y^2 + y^4 = \lambda(4x^3 + 4y)$ $x^3 + 2xy + 4xy^3 = \lambda(4x + 4y^3)$ $x^4 + 4xy + y^4 = 4$

 $\begin{array}{l} 3x^2y + y^2 + y^4 = \lambda(4x^3 + 4y^3) & 3x^2y + y^2 + y^4 = \lambda(4x^3 + 4y + 4y^3) & 3x^2y + y^2 + y^4 = \lambda(4x^3 + 4y^3) & 3x^2y + y^2 + \lambda(4x^3 + 4y^3) & 3x^2y + \lambda(4x^3 + 4y^3) & 3x^2 + \lambda(4x^3 + 4y^3) & 3$

Let R be the triangle in the plane with vertices at the points (0,0), (0,1), and (1,1). Compute the double integral $_Rx + y^2 dA$. $\frac{5}{12} \frac{6}{15} \frac{1}{4} \frac{1}{3} \frac{2}{5}$

Reverse the order of integration of the iterated integral $\int_0^1 \int_{\sqrt{y}}^1 f(x,y)$. $\int_0^1 \int_0^{x^2} f(x,y) \int_1^{\sqrt{x}} \int_0^1 f(x,y) \int_1^{\sqrt{x}} \int_0^1 f(x,y) \int_1^1 \int_{x^2}^1 f(x,y) \int_0^1 \int_{x^2}^1 f(x,y) \int_{x^2}^1 f($

Find the centroid of the region between the *y*-axis and $x = 1 - y^4$. $(\frac{4}{9}, 0)$ $(\frac{32}{45}, 0)$ $(\frac{5}{8}, 0)$ $(\frac{3}{8}, 0)$ $(\frac{4}{5}, 0)$