Math 225: Calculus III

Final Exam May 2, 1994

Name:.

Section:

Record your answers to the multiple choice problems by placing an × through one letter for each problem on this answer sheet. There are 25 multiple choice questions worth 5 points each. You start with 25 points.

Find the area of the parallelogram with vertices (0,0,0), (1,2,-1), (0,1,1), and (1,3,0).

3.32 2.87 3.94 2.60 2.35

Find the parametric equations of the line that passes through the point (1,0,-1) and is perpendicular to the plane 2x - y + 3z = 7.

$$x = 1 + 2t$$

$$y = -t$$

$$z = -1 + 3t$$

$$2(x-1) - y + 3(z+1) = 7$$
 $x = 2+t$ $x = 2t$ $x = t$

$$y = -1$$
 $y = -t$ $y = 0$
 $z = 3 - t$ $z = 3t$ $z = -t$

Find the equation of the plane through the point (3,1,5) perpendicular to the y-axis.

$$y = 1$$
 $x + z = 8$ $3x + y + 5z = 9$ $x + y + z = 9$ $3(x - 3) + (y - 1) + 5(z - 5) = 0$

A particle's position is given by $(t) = \cos(\pi t) \subset +\sin(\pi t) \supset +t^2$. Find its speed at t=2.

$$\sqrt{16+\pi^2}$$
 $-\pi \subset +\pi \supset +4$ $\sqrt{17}$ 2π $4\supset$

Suppose a particle's acceleration is $(t) = e^t \subset +e^{-t} \supset +$. Find the particle's position at time t=1 if it is initially at rest at the origin.

$$(e-2) \subset +e^{-1} \supset +\frac{1}{2} \ e \subset +e^{-1} \supset +\frac{1}{2} \ (e-2) \subset +(e^{-1}+2) \supset + \ e \subset +(e^{-1}+2) \supset +\frac{1}{2} \ (e-1) \subset +(e^{-1}+1) \supset +$$

Let $(t) = 2t \subset +3t^2 \supset -t^3$. Find the unit tangent vector, (t), at t = 1. $\frac{2}{7} \subset +\frac{6}{7} \supset -\frac{3}{7}$ $2 \subset +2 \supset -3$ $2 \subset +6t \supset -3t^2 \quad \frac{2}{\sqrt{4+4t^2+9t^4}} \subset +\frac{2t}{\sqrt{4+4t^2+9t^4}} \supset -\frac{3t^2}{\sqrt{4+4t^2+9t^4}} \quad \frac{2}{\sqrt{17}} \subset +\frac{2}{\sqrt{17}} \supset -\frac{3}{\sqrt{17}}$ Compute $\lim_{(x,y)\to(0,0)} \frac{x^3+y^3}{x^2+y^2}$. 0 1 2 $\frac{1}{2}$ does not exist

Let $f(x,y) = xe^{xy}$. Compute $f_{xy}(2,1)$. $8e^2 3e^2 2e^2 4e^2 6e^2$

The position and velocity of a smoothly moving particle at time t=1 are $(1)=3\subset +4\supset$ and $(1) = 5 \subset -5 \supset$, respectively. Determine how fast the distance of the particle to the origin is changing at time t = 1.

$$-1 -5 5\sqrt{2} -\sqrt{2}/2 35$$

Find the direction in which the function $f(x,y) = \sin(x^2 + xy)$ is increasing most rapidly at (0,1).

Find the equation of the plane tangent to the graph of $f(x,y) = x^2y - y^3$ at the point (2,1).

$$4x + y - z = 6$$
 $4x + y - z = 0$ $2xy + x^2 - 3y^2 = 5$ $4x + y = 9$ $4x + y = 0$

Find all of the critical points of the function $f(x,y) = x^2y - 6xy + 8y - x^2 + 6x - 8$.

(2,1), (4,1), (2,1), (3,1), (4,1), (2,1), (2,-1), (3,1), (3,-1), (4,1), (4,-1), (2,0), (2,1), (4,0),(4,1), (3,0), (3,1), (3,1)

Let $f(x,y) = x^3y - 3x^2y$. determine which of the following statements is true.

f has a saddle point at (3,0). f has a local minimum at (3,0). f has a local maximum at (3,0). f is not continuous at (3,0). (3,0) is not a critical point of f.

Determine which of the following sysytems of equations must be solved to find the extrema of the function $f(x,y) = x^2y - y^3$ subject to the constraint $x^4 + y^4 = 1$ using the method of Lagrange multipliers.

$$xy = 2\lambda x^3$$

$$xy = 2\lambda x^3$$
$$x^2 - 3y^2 = 4\lambda y^3$$

$$x^4 + y^4 = 1$$

$$2xy = \lambda x^2$$

$$2xy = \lambda x^4$$

$$x^2 - 3y^2 = \lambda y^4$$

$$x^4 + y^4 = 1$$

$$x^{4} + y^{4} = 1$$

$$xy = 0$$

$$x^2 - 3y^2 = 0$$

$$x^3 + y^3 = 0$$

$$xy = 0$$

$$x^{2} - 3y^{2} = 0$$

$$x^{4} + y^{4} = 1$$

$$xy = 4\lambda x^{3}$$

$$x^{2} - 3y^{2} = 4\lambda y^{3}$$

$$x^{4} + y^{4} = 0$$
Find the same

Find the area enclosed by one leaf of the rose $r = 6\sin(2\theta)$.

 $9\pi/2$ 18π 9π 4π 6π

Find the centroid of the triangle in the xy-plane with vertices (0,0), (2,1), (2,0).

$$(\frac{4}{3}, \frac{1}{3})$$
 $(\frac{3}{4}, \frac{1}{4})$ $(\frac{5}{4}, \frac{1}{4})$ $(\frac{5}{4}, \frac{1}{3})$ $(\frac{4}{3}, \frac{1}{4})$

Compute the volume of the portion of the solid region bewteen the spheres $\rho=1$ and $\rho=2$ that lies inside the upper nappe of the cone $x^2+y^2=z^2$.

$$7\pi(2-\sqrt{2})/3$$
 $5\pi(\sqrt{2}-1)/3$ $14\pi/3$ $5\sqrt{2}\pi/3$ 7π

Find the average value of the height function f(x, y, z) = z in the solid region D inside the cylinder $x^2 + y^2 = 1$ between the planes x + y + z = 4 and z = 0. The volume of D is 4π .

 $2.06\ 2.84\ 2.57\ 3.21\ 2.28$

Compute the Jacobian $\frac{\partial(x,y)}{\partial(u,v)}$ of the change of coordinates u=5x+2y and v=y-2x.

$$\frac{1}{9}$$
 9 5 $\frac{1}{5}$ -12

Let \mathcal{C} be the curve defined by $(t) = t^3 \subset +t^2 \supset$, $0 \leq t \leq 1$. Compute $\int_{\mathcal{C}} (9x + 2\sqrt{y}) ds$.

$$\frac{13^{3/2}}{6} \quad \frac{17^{3/2}}{2} \quad \frac{15^{3/2}}{3} \quad \frac{11^{3/2}}{2} \quad \frac{9}{2}$$

Use the Fundamental Theorem of Line Integrals to compute $\int_{\mathcal{C}} (2xy+1) dx + (x^2+3y^2-z) dy + (6z-y) dz$. where \mathcal{C} is a smooth curve from (0,0,0) to (1,2,3).

32 16 8 64 4

Compute the surface area of the portion of the paraboloid $x^2 + y^2 + z = 9$ above the plane z = 5.

 $\frac{\pi}{6}(17^{3/2}-1)$ $\frac{\pi}{2}(11^{3/2}-1)$ $\frac{\pi}{12}(13^{3/2}-1)$ $\frac{\pi}{3}(15^{3/2}-1)$ $\frac{13\pi}{3}$ Let Σ be the part of the sphere $x^2+y^2+z^2=4$ above the triangle in the xy-plane with vertices (0,0,0), (1,1,0), and (1,0,0). Let $= y \subset -x \supset +2x$ and let be the upward unit normal vector to Σ . Compute the flux integral $\sum d\sigma$.

2/3 3/4 4/5 1/2 7/8

Let \mathcal{C} be the intersection of the plane y+z=1 with the cylinder $x^2+y^2=4$, oriented counterclockwise. Let $=x^2\subset +xy\supset +z^2$. Use Stokes' Theorem to compute $\int_{\mathcal{C}}d$.

 $0 \ 2\pi \ 3\pi/4 \ 5\pi/16 \ \pi/2$

Let Σ be the unit sphere with outward unit normal vector. Let $=x^3\subset +y^3\supset +z^3$. Use the Divergence Theorem to compute the flux integral $\sum d\sigma$.

 $12\pi/5$ $16\pi/3$ 6π $9\pi/2$ 2π