Math 225: Calculus III
Exam I February 16, 1995

Name: Section:

Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this answer sheet. There are 15 multiple choice questions worth 6 points each. You start with 10 points.

Let $=2 \subset-\supset+3$ and $\equiv-\subset+5 \supset$. Compute $\times _-15 \mathrm{\imath}-3 \mathrm{\jmath}+9-2 \mathrm{\imath}-5 \mathrm{\jmath} 10 \mathrm{\imath}+3 \mathrm{\jmath}--5 \mathrm{\imath}+13 \mathrm{\jmath}-6 \mathrm{\imath}+4 \mathrm{\jmath}$
Three vertices of a parallelogram are $(1,2),(3,3)$, and $(2,4)$. Determine which of the following points could be the fourth vertex. $(4,5)(3,0)(0,4)(0,0)(3,1)$

Compute the angle between the planes $x+y+z=3$ and $4 x-3 y=1.1 .455$ radians 1.571 radians 0.785 radians 1.047 radians 1.134 radians

Find the equation of the line that passes through the points $(3,-1,0)$ and $(4,5,1) . x=3+t, y=-1+6 t$, $z=t x=1+3 t, y=6-t, z=0 x=3+4 t, y=-1+5 t, z=t x=4+3 t, y=5-t, z=0 x=3 t, y=6 t$, $z=t$

Determine which of the vector functions below defines the following curve:
$(t)=\sin (t) \subset+t \supset+\cos (t)(t)=\cos (t) \subset-\sin (t) \supset+t(t)=\cos (t) \subset+\sin (t) \supset+t(t)=t \subset+\cos (t) \supset$ $+\sin (t)(t)=t \subset-\sin (t) \supset+\cos (t)$

Find a vector function (t) such that ${ }^{\prime \prime}(t)=e^{t} \subset+e^{-t} \supset,^{\prime}(0)=$, and $(0)=\subset-\supset .(t)=\left(e^{t}-t\right) \subset$ $+\left(e^{-t}+t-2\right) \supset+t(t)=\left(e^{t}+1\right) \subset+\left(e^{-t}-1\right) \supset+t(t)=e^{t} \subset-e^{-t} \supset+t(t)=\left(t-e^{t}\right) \subset+\left(t-e^{-t}\right) \supset+(t-1)$ $(t)=\left(e^{t}+t\right) \subset+\left(e^{-t}-t\right) \supset+\frac{1}{2} t^{2}$

The position of a particle at time t is given by $(t)=\left(t^{3}-t\right) \subset+\left(t^{2}-t\right) \supset+2 t$. Find the direction in which the particle is moving at time $t=1.2 \subset+\supset+23 \subset+2 \supset+2\left(3 t^{2}-1\right) \subset+(2 t-1) \supset+26 \subset+2 \supset$ $-\frac{1}{4} \subset-\frac{1}{6} \supset+$

Compute the unit normal vector to the curve defined by $(t)=(\cos (t)+t) \subset+(t-\cos (t)) \supset+\sqrt{2} \sin (t)$ $(t)=-\frac{1}{\sqrt{2}} \cos (t) \subset+\frac{1}{\sqrt{2}} \cos (t) \supset-\sin (t)(t)=-\cos (t) \subset+\cos (t) \supset-\sqrt{2} \sin (t)(t)=\frac{1}{\sqrt{2}} \sin (t) \subset$ $-\frac{1}{\sqrt{2}} \sin (t) \supset+\cos (t)(t)=-\cos (t) \subset-\cos (t) \supset+\sin (t)(t)=\frac{1}{\sqrt{2}} \cos (t) \subset+\cos (t) \supset-\frac{1}{\sqrt{2}} \sin (t)$

Find the tangential component of acceleration, $a_{T}(t)$, of a particle whose motion is described by

$$
(t)=\left(e^{t}+e^{-t}\right) \subset+\left(e^{t}-e^{-t}\right) \supset
$$

$\frac{\sqrt{2}\left(e^{2 t}-e^{-2 t}\right)}{\sqrt{e^{2 t}+e^{-2 t}}} \sqrt{2\left(e^{2 t}+e^{-2 t}\right)}\left(e^{t}+e^{-t}\right) \subset+\left(e^{t}-e^{-t}\right) \supset 2\left(e^{2 t}+e^{-2 t}\right) \frac{\left(e^{t}+e^{-t}\right)}{\sqrt{e^{2 t}+e^{-2 t}}} \subset+\frac{\left(e^{t}-e^{-t}\right)}{\sqrt{e^{2 t}+e^{-2 t}}} \supset$
Determine which of the following integrals gives the length of the curve defined by $(t)=t^{2} \subset+\left(t^{3}-\right.$ $t) \supset+t^{5}, 0 \leq t \leq 2 . \int_{0}^{2} \sqrt{25 t^{8}+9 t^{4}-2 t^{2}+1} d t \int_{0}^{2} 2 t \subset+\left(3 t^{2}-1\right) \supset+5 t^{4} d t \int_{0}^{2} \sqrt{5 t^{4}+3 t^{2}+2 t-1} d t$ $\int_{0}^{2} \sqrt{t^{10}+t^{6}+t^{4}-2 t^{3}+t^{2}} d t \int_{0}^{2} \frac{1}{3} t^{3} \subset+\left(\frac{1}{4} t^{4}-\frac{1}{2} t^{2}\right) \supset+\frac{1}{6} t^{6} d t$

Compute the distance from the point $(1,3,7)$ to the line $x=2-t, y=6+2 t, z=3 t .6 .385 .274 .16$ 7.493 .05

Calculate the distance from the point $(-1,-1,1)$ to the plane $x+y+z=5.2 \sqrt{3} \frac{5}{\sqrt{3}} 5 \sqrt{3} \frac{\sqrt{3}}{2} \sqrt{6}$

Determine the equations of the line tangent to the curve $(t)=3 t^{2} \subset-t \supset+\left(t^{3}-1\right)$ at the point $(12,-2,7) x=12+12 t, y=-2-t, z=7+12 t x=12+6 t, y=-3, z=7+3 t^{2} x=12+6 t^{2}, y=-3 t$, $z=7+3 t^{3} x=12+6 t, y=-2-t, z=7+3 t x=12+12 t, y=-2, z=7+6 t$

Compute the limit $\lim _{(x, y) \rightarrow(1,1)} \frac{(x y-x+y-1)^{2}}{x y^{2}-2 x y+x} 4$ exists, but has many possible values 0 does not exist $\frac{1}{2}$ Let $f(x, y)=e^{2 x}\left(y^{3}-x y\right)+x y^{2}$. Compute $f_{x y}(2,5) .145 e^{4}+1075 e^{4}+10150 e^{4} 2 e^{4}+10115 e^{4}+25$

