\qquad

Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this answer sheet. There are 15 multiple choice questions worth 6 points each. You start with 10 points.

The force of gravity on a spacecraft located at (x, y, z) is $F(x, y, z)=3125 /\left(x^{2}+y^{2}+z^{2}\right)$. Suppose the spacecraft's position and velocity at time $t=1$ are $=9 \supset+12$ and $\check{=} 10 \subset-12 \supset+90$, respectively. Find $\frac{d F}{d t}$ at time $t=1$.
$-1200(0,-10 / 9,-40 / 27)(-0.001,-0.001,-0.008)-0.107$
Let $f(x, y, z)=x^{2} y-y^{2} z$. Compute the derivative of f at the point $(1,2,0)$ in the direction $4 \subset+3$. $4 / 544 / \sqrt{33} 24 / \sqrt{14}$

Let $f(x, y, z)=e^{-y z} \cos (x y)$. Compute (f) at the point $(\pi, 1,0) .-\supset-\supset$
Determine the equation of the plane tangent to the ellipsoid

$$
x^{2}+2 y^{2}+3 z^{2}=20
$$

at the point $(3,2,1) 3 x+4 y+3 z=202 x+4 y+6 z=02(x-3)+4(y-2)+6(z-1)=03 x+4 y+3 z=0$ $2 x(x-3)+4 y(y-2)+6 z(z-1)=0$

Find the critical points of the function $f(x, y)=2 x^{3} y-6 x y+3 y^{2} .(0,0),(1,2 / 3),(-1,-2 / 3),(\sqrt{3}, 0),(-\sqrt{3}, 0)$ $(0,0),(1,2 / 3),(-1,2 / 3),(1,-2 / 3),(-1,-2 / 3)(1,2 / 3),(-1,2 / 3),(1,-2 / 3),(-1,-2 / 3)(0,0),(\sqrt{3}, 0),(-\sqrt{3}, 0)$ $(0,0),(1,2 / 3),(-1,2 / 3),(1,-2 / 3),(-1,-2 / 3),(\sqrt{3}, 0),(-\sqrt{3}, 0)$

Choose the statement below that applies to the function

$$
f(x, y)=x^{3} y-x y^{2}+2 x y
$$

f has a critical point at $(\sqrt{2}, 0) f$ has a local maximum at $(0,0) f$ has a local minimum at $(0,0) f$ has a saddle point at $(0,2)$ none of the above

Find the maximum value of the function $f(x, y)=\left(1-y^{2}\right) \log \left(1+x^{2}\right)$ on the rectangle $-1 \leq x \leq 1$, $-1 \leq y \leq 1.0 .6930 .2851 .1760 .1040 .922$

Find the extreme values of the function $f(x, y)=1+x^{2} y$ on the unit circle $x^{2}+y^{2}=1.1 .385$ and 0.615 1.570 and 0.3011 .125 and 0.9781 .404 and 0.8391 .829 and 0.532

Let R be the region between the x-axis and $y=x$ for $0 \leq x \leq 1$. Compute ${ }_{R} 6 y e^{x^{3}} d A .1 .7181 .415$ 2.8430 .2861 .031

Reverse the order of integration of the integral

$$
\begin{gathered}
\int_{1}^{5} \int_{\sqrt{y-1}}^{2} f(x, y) d x d y \\
\int_{0}^{2} \int_{1}^{1+x^{2}} f(x, y) d y d x \int_{\sqrt{y-1}}^{2} \int_{1}^{5} f(x, y) d y d x \int_{0}^{1} \int_{2}^{1+x^{2}} f(x, y) d y d x \int_{0}^{\sqrt{y-1}} \int_{1}^{2} f(x, y) d y d x \int_{1}^{2} \int_{1+x^{2}}^{5} f(x, y) d y d x
\end{gathered}
$$

Find the area of the region inside the cardiod $r=1+\sin (\theta)$ in the first quadrant.
$1+\frac{3 \pi}{8} 1+\frac{\pi}{2} 1+\frac{\pi}{4} 1+\frac{3 \pi}{4} 1+\frac{\pi}{8}$
Compute the volume of the solid region under the graph of $f(x, y)=4-x^{2}-y^{2}$ over the triangular region defined by $x+y \leq 1$ in the first quadrant.

11/6 4/3 17/12 5/2 9/4
Find the average value of the function $f(x, y)=y \sin (x y)$ over the region $0 \leq x \leq \sqrt{\pi}, 0 \leq y \leq \sqrt{\pi} . \frac{1}{\sqrt{\pi}}$ $\frac{1}{\pi \sqrt{\pi}} 0 \sqrt{\pi} \pi \sqrt{\pi}$

Suppose z is a function of u and v and that $u=x^{2}-y^{2}$ and $v=\log (x-y)$. If $z_{u}(3,0)=-3$ and $z_{v}(3,0)=5$, compute $z / d x$ when $x=2$ and $y=1 .-728-1-238$

Choose the function below that has the following graph.
$f(x, y)=y^{2}+x^{2} y-y f(x, y)=y^{2}+x^{2} f(x, y)=x-y^{2}-x^{2} f(x, y)=y^{2}+2 x y-x f(x, y)=y^{2}-x^{2} y$

