1. The force of gravity on a spacecraft located at (x, y, z) is $F(x, y, z)=3125 /\left(x^{2}+y^{2}+z^{2}\right)$. Suppose the spacecraft's position and velocity at time $t=1$ are $=9 \supset+12$ and $\check{=} 10 \subset-12 \supset+90$, respectively. Find $\frac{d F}{d t}$ at time $t=1$.
Solution: $\frac{d F}{d t}=\mathrm{F} / d x \frac{d x}{d t}+\mathrm{F} / d y \frac{d y}{d t}+\mathrm{F} / d z \frac{d z}{d t}=\frac{-2(3125)}{r^{4}}\left(x \frac{d x}{d t}+y \frac{d y}{d t}+z \frac{d z}{d t}\right)$ where $r^{4}=\left(x^{2}+y^{2}+z^{2}\right)^{2}$. At $t=1,(x, y, z)=(0,9,12)$ and $\frac{d x}{d t} \subset+\frac{d y}{d t} \supset+\frac{d z}{d t}=10 \subset-12 \supset+90$ (given). Plug in to get $\frac{d F}{d t}=-120$.
2. Let $f(x, y)=x^{2} y-y^{2} z$. Compute the derivative of f at the point $(1,2,0)$ in the direction $(4,0,3)$.

Solution: $\fallingdotseq(4 \subset+3) / \sqrt{16+9}=(4 / 5) \subset+(3 / 5) . f=2 x y \subset+\left(x^{2}-2 y z\right) \supset-y^{2}=4 \subset+\supset-4$ at $(1,2,0)$. $D_{\breve{f}}=f \cdot \breve{=} 16 / 5-12 / 5=4 / 5$.
3. Let $f(x, y, z)=e^{-y z} \cos (x y)$. Compute (f) at the point $(\pi, 1,0)$.

Solution: $f=-y \sin (x y) e^{-y z} \subset-\left(x \sin (x y) e^{-y z}+z \cos (x y) e^{-y z}\right) \supset-y e^{-y z} \cos (x y)=-\sin (\pi) \subset-\pi \sin (\pi) \supset \square$ $-\cos (\pi)=$ at $(\pi, 1,0)$.
4. Determine the equation of the plane tangent to the ellipsoid $x^{2}+2 y^{2}+3 z^{2}=20$ at the point $(3,2,1)$.

Solution: $f=2 x \subset+4 y \supset+6 z=6 \subset+8 \supset+6$ at $(3,2,1)$. The equation of the tangent plane is then $6(x-3)+8(y-2)+6(z-1)=0$, or $3 x+4 y+3 z=20$.
5. Find the critical points of the function $f(x, y)=2 x^{3} y-6 x y+3 y^{2}$.

Solution: (a): $f_{x}=6 x^{2} y-6 y=0$, (b): $f_{y}=2 x^{3}-6 x+6 y=0$. If $y=0$ then (a) is OK and (b) implies $x=0$ or $x= \pm \sqrt{3}$, and we get three critical points, $(0,0),(\pm \sqrt{3}, 0)$. If $y \neq 0$ then (a) implies that $x= \pm 1$; for $x=1$, (b) implies $y=2 / 3$ and for $x=-1$, (b) implies $y=-2 / 3$ so we get two more critical points, $(1,2 / 3)$, and $(-1,-2 / 3)$.
6. Choose the statement below that applies to the function $f(x, y)=x^{3} y-x y^{2}+2 x y$.

Solution: The given points to consider are $(\sqrt{2}, 0),(0,0)$ and $(0,2) . f_{x}=3 x^{2} y-y^{2}+2 y=0, f_{y}=$ $x^{3}-2 x y+2 x=0 . f_{y}(\sqrt{2}, 0) \neq 0$ so $(\sqrt{2}, 0)$ is not a critical point. $f_{x}(0,0)=0=f_{y}(0,0)$ and $f_{x}(0,2)=$ $0=f_{y}(0,2)$, so we must examine the discriminant to see what type of critical points they are. $D=$ $(6 x y)(-2 x)-\left(3 x^{2}-2 y+2\right)^{2} ; D(0,0)=-(2)^{2}<0$, and $D(0,2)=-(-2)^{2}<0$, so both are saddle points.
7. Find the maximum value of the function $f(x, y)=\left(1-y^{2}\right) \log \left(1+x^{2}\right)$ on the rectangle $-1 \leq x \leq 1$, $-1 \leq y \leq 1$.
Solution: Critical points inside: (a): $f_{x}=\frac{1-y^{2}}{1+x^{2}}(2 x)=0,(\mathrm{~b}): f_{y}=-2 y \log \left(1+x^{2}\right)=0$. (a) implies $x=0$, or $y= \pm 1$. When $x=0$, (b) implies $y=c$ (arbitrary); when $y= \pm 1$ (b) implies $x=0$. At these critical points, $f(0, c)=0$. On the boundary: $f(x, \pm 1)=0$, and $f(\pm 1, y)=\left(1-y^{2}\right) \log (2)$. The latter function has a maximum of $\log (2)=0.693$ at $y=0$.
8. Find the extreme values of the function $f(x, y)=1+x^{2} y$ on the unit circle $x^{2}+y^{2}=1$.

Solution: Using Lagrange multipliers, solve (a): $2 x y=\lambda 2 x$, (b): $x^{2}=\lambda 2 y$, and (c): $x^{2}+y^{2}=1$. If $x=0$, then (a) is OK, and (c) implies $y= \pm 1((\mathrm{~b})$ implies $\lambda=0)$, so we get critical points $(0, \pm 1)$ and $f(0, \pm 1)=1$. If $x \neq 0$ then (a) implies $\lambda=y$, (b) implies $x= \pm \sqrt{2} y$, and (c) implies $x= \pm \sqrt{1 / 3}$, so we get the critical points $(\pm \sqrt{2 / 3}, \pm \sqrt{1 / 3})$ and $f(\pm \sqrt{2 / 3}, \pm \sqrt{1 / 3})=1 \pm \frac{2}{3 \sqrt{3}}=1.385,0,615$.

You could also plug in the constraint equation into f and find the maximum of $g(y)=f\left(\pm \sqrt{1-y^{2}}, y\right)=$ $1+\left(1-y^{2}\right) y: g^{\prime}(y)=0$ when $3 y^{2}=1$, etc.
9. Let R be the region between the x-axis and $y=x$ for $0 \leq x \leq 1$. Compute ${ }_{R} 6 y e^{x^{3}} d A$.

Solution: $\int_{0}^{1} \int_{0}^{x} 6 y e^{x^{3}} d y d x=\int_{0}^{1} 3 x^{2} e^{x^{3}} d x=\left.e^{x^{3}}\right|_{0} ^{1}=e-1=1.728$.
10. Reverse the order of integration of the integral $\int_{1}^{5} \int_{\sqrt{y-1}}^{2} f(x, y) d x d y$.

Solution: The region (described horizontally) is: $\sqrt{y-1} \leq x \leq 2,1 \leq y \leq 5$. Rewriting this vertically gives $1 \leq y \leq 1+x^{2}, 0 \leq x \leq 2$ (draw the picture) and the integral is $\int_{0}^{2} \int_{1}^{1+x^{2}} f(x, y) d y d x$.
11. Find the area of the region inside the cardiod $r=1+\sin (\theta)$ in the first quadrant.

Solution: $\int_{0}^{\pi / 2} \int_{0}^{1+\sin (\theta)} r d r d \theta=\int_{0}^{\pi / 2} \frac{1}{2}(1+\sin (\theta))^{2} d \theta=\int_{0}^{\pi / 2} \frac{1}{2}+\sin (\theta)+\frac{1}{2} \sin (\theta)^{2} d \theta=\int_{0}^{\pi / 2} \frac{1}{2}+$ $\sin (\theta)+\frac{1}{4}-\frac{1}{4} \cos (2 \theta) d \theta=\frac{3}{4} \theta-\cos (\theta)-\left.\frac{1}{8} \sin (2 \theta)\right|_{0} ^{\pi / 2}=1+\frac{3 \pi}{8}$.
12. Compute the volume of the solid region under the graph of $f(x, y)=4-x^{2}-y^{2}$ over the triangular region defined by $x+y \leq 1$ in the first quadrant.
Solution: The region is $0 \leq y \leq 1-x, 0 \leq x \leq 1$ (draw the picture). So the volume is given by $\int_{0}^{1} \int_{0}^{1-x} 4-$ $x^{2}-y^{2} d y d x=\int_{0}^{1} 4(1-x)-x^{2}(1-x)-\frac{1}{3}(1-x)^{3} d x=4 x-2 x^{2}-\frac{1}{3} x^{3}+\frac{1}{4} x^{4}+\left.\frac{1}{12}(1-x)^{4}\right|_{0} ^{1}=4-2-\frac{1}{3}+\frac{1}{4}-\frac{1}{12}=$ $\frac{22}{12}=\frac{11}{6}$.
13. Find the average value of the function $f(x, y)=y \sin (x y)$ over the region $0 \leq x \leq \sqrt{\pi}, 0 \leq y \leq \sqrt{\pi}$.

Solution: The region is a square with area $(\sqrt{\pi})^{2}=\pi$, so the average is $\bar{f}=\frac{1}{\pi} \int_{0}^{\sqrt{\pi}} \int_{0}^{\sqrt{\pi}} y \sin (x y) d x d y=$ $\frac{1}{\pi} \int_{0}^{\sqrt{\pi}}-\left.\cos (x y)\right|_{0} ^{\sqrt{\pi}} d y=\frac{1}{\pi} \int_{0}^{\sqrt{\pi}}-\cos (\sqrt{\pi} y)+1 d y=\left.\frac{1}{\pi}\left(y-\frac{1}{\sqrt{\pi}} \sin (\sqrt{\pi} y)\right)\right|_{0} ^{\sqrt{\pi}}=\frac{1}{\pi} \sqrt{\pi}=\frac{1}{\sqrt{\pi}}$.
14. Suppose z is a function of u and v and that $u=x^{2}-y^{2}$ and $v=\log (x-y)$. If $z_{u}(3,0)=-3$ and $z_{v}(3,0)=5$, compute $\mathrm{z} / d x$ when $x=2$ and $y=1$.
Solution: $z_{x}=z_{u} u_{x}+z_{v} v_{x}=2 x z_{u}+\frac{1}{x-y} z_{v}$. Note that when $(x, y)=(2,1)$, we get $(u, v)=(3,0)$. Plug in the given values for x, y, z_{u} and z_{v} to get $z_{x}=4(-3)+1(5)=-7$.
15. Choose the function below that has the following graph.

Solution: The graph clearly has more than one critical point (you should be able to see a local minimum and two saddle points). All of the given functions have only one critical point except $f(x, y)=y^{2}+x^{2} y-y$ which has three critical points: $(0,1 / 2)$ and $(\pm 1,0)$.
You could also examine the edges: When $y \approx 1$, the graph looks like a parabola opening up and when $y \approx-1$, the graph looks like a parabola opening down. Only two of the given answers give something like $x^{2}+c$ when $y=1$ and only one of these (the above answer) looks like $-x^{2}+c$ when $y=-1$.

