Math 225: Calculus III
Final Exam May 9, 1995

Name:
Score:

Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this answer sheet. There are 25 multiple choice questions worth 5 points each. You start with 25 points.

A vector is perpendicular to a vector $i f \equiv 0 \times \equiv 0+\equiv 0=c$, $\operatorname{somescalar} \mathrm{c}(\underline{\times})=0$
Compute the projection of $=\subset+2$ onto $\equiv \subset+2 \supset+$. $\frac{1}{2} \subset+\supset+\frac{1}{2} \subset+2 \supset+1 \subset+2 \frac{3}{5} \subset+\frac{6}{5}$ $\frac{1}{5} \subset+\frac{2}{5} \supset+\frac{1}{5}$

Determine the parametric equation of the line through the points $(-1,0,3)$ and $(2,1,-1) .(t)=(-1+$ $3 t) \subset+t \supset+(3-4 t)(t)=(-1+2 t) \subset+t \supset+(3-t)(t)=(2-t) \subset+\supset+(-1+3 t)(t)=3 t \subset-4 t$ $(t)=(2+3 t) \subset+(1+t) \supset+(-1+4 t)$

Determine the equation of the plane perpendicular to the line $x=3+t, y=1-2 t, z=-1+t$ at the point $(3,1,-1) . x-2 y+z=02 x-y=34 x-y=113 x+y-z=113 x-2 y+z=6$

Find $\lim _{(x, y) \rightarrow(0,0)} \frac{(x+y)^{2}}{x^{2}+y^{2}}$. Does not exist $1 \frac{1}{2} 0-1$
Suppose the motion of a particle is described by $(t)=\cos (-\pi t) \subset+\sin (\pi t) \supset+t$. Find the particle's speed at time $t=1.3 .2974 .5003 .7654 .0212 .920$

Two particles are moving along the paths

$$
\begin{aligned}
& 1(t)=t \subset+t^{2} \supset+2 t \\
& { }_{2}(t)=t^{3} \subset+j+(3 t-1)
\end{aligned}
$$

and collide at time $t=1$ at the point $(1,1,2)$. Find the angle in radians of this collision.
0.7851 .5713 .1421 .0470 .524

A right circular cylinder with volume V has a height, h, and a radius, r, that depend on the pressure x and temperature y of the surrounding medium. If $r=2, h=5, r=-2 \subset+3 \supset$, and $h=-\subset+4 \supset$, when $(x, y)=(10,20)$, which of the following gives $V .-44 \pi \subset+76 \pi \supset 20 \pi \subset+4 \pi \supset-28 \pi \subset+-4 \pi$ $40 \pi \subset+48 \pi$

Let $f(x, y, z)=x y^{2}+x^{2} z+z^{2} y$. Find the derivative of f in the direction of the vector $\subset+2 \supset+2$ at the point $(1,-1,2) .12346$

Determine the equation of the plane tangent to the graph of $f(x, y)=e^{y}(\sin (x)-\cos (x))$ at the point $(0,0,-1) . x-y-z=12 e^{y} \sin (x)-z=1 e^{y}(\cos (x) x+\sin (x))-e^{y}(\cos (x)-\sin (x)) y=0 x+y+z=-1$ $x-y=0$

Let $f(x, y)=x^{3}-3 x y+y^{2}$. Determine which of the following statements is true. f has a relative minimum at $\left(\frac{3}{2}, \frac{9}{4}\right)$. f has a relative maximum at $\left(\frac{3}{2}, \frac{9}{4}\right)$. f has a saddle point at $\left(\frac{3}{2}, \frac{9}{4}\right)$. $\left(\frac{3}{2}, \frac{9}{4}\right)$ is not a critical point of f None of the above

Find the maximum of $f(x, y)=x(1-y)$ on the unit circle $x^{2}+y^{2}=1.1 .2990 .7070 .2500 .8661 .414$
Reverse the order of integration in the iterated integral $\int_{-1}^{1} \int_{2|x|}^{2} f(x, y) . \int_{0}^{2} \int_{-y / 2}^{y / 2} f(x, y) \int_{2|x|}^{2} \int_{-1}^{1} f(x, y)$ $\int_{-1}^{1} \int_{0}^{|y| / 2} f(x, y) \int_{0}^{2} \int_{0}^{y / 2} f(x, y) \int_{-2}^{2} \int_{-y / 2}^{0} f(x, y)$

Determine which of the following integrals gives the volume of the solid bounded by the planes $x+y-z=$ $0, x-2 y+z=0, y=0$, and $x+y=2$.
$\int_{0}^{4 / 3} \int_{y / 2}^{2-y} \int_{2 y-x}^{x+y} d z d x d y \int_{0}^{2} \int_{0}^{2-x} \int_{2 y-x}^{x+y} d z d y d x \int_{0}^{2} \int_{0}^{2-y} \int_{2 y-x}^{x+y} d z d x d y \int_{0}^{4 / 3} \int_{2 x}^{2-x} \int_{x+y}^{2 y-x} d z d y d x \int_{0}^{2} \int_{y}^{2-y} \int_{x+y}^{2 y-x} d z d x d y$
Let D be the solid in the first octant that is bounded above by the plane $z=9$ and is bounded below by $z=x^{2}+y^{2}$. Write ${ }_{D} x y z d V$ in cylindrical coordinates. $\int_{0}^{\pi / 2} \int_{0}^{3} \int_{r^{2}}^{9} z r^{3} \cos (\theta) \sin (\theta) d z \int_{0}^{\pi} \int_{0}^{3} \int_{0}^{9} z r^{2} \cos (\theta) \sin (\theta) d z$ $\int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{3} z r^{2} \cos (\theta) \sin (\theta) d z \int_{0}^{\pi / 2} \int_{0}^{3} \int_{r}^{9} z r^{3} \cos (\theta) \sin ^{2}(\theta) d z \int_{0}^{\pi / 2} \int_{0}^{1} \int_{r^{2}}^{3} z r^{2} \cos (\theta) \sin (\theta) d z$

Compute $D \sqrt{x^{2}+y^{2}} d V$ where D is the solid sphere $x^{2}+y^{2}+z^{2} \leq 4.4 \pi^{2} \pi^{2} 12 \pi / 516 \pi^{2} / 316 \pi / 5$
Let R be the region defined by $\frac{1}{2} x \leq y \leq 2 x, 1 \leq x y \leq 2$. Using the change of variables $u=x y, v=\frac{y}{x}$ transform ${ }_{R} x y d A$ into an iterated integral in the $u v$-plane. (Hint: You do not have to solve for x and y.)
$\int_{1 / 2}^{2} \int_{1}^{2} \frac{u}{2 v} d u d v \int_{1 / 2}^{2} \int_{1}^{2} u v d u d v \int_{1 / 2}^{2} \int_{1}^{2} 2 u v^{2} d u d v \int_{x / 2}^{2 x} \int_{1}^{2} u d u d v \int_{1}^{2} \int_{x / 2}^{2 x}\left(u v+\frac{u}{v}\right) d u d v$
Compute $\int x d s$ where is the curve parameterized by $(t)=\sqrt{t} \subset+t \supset, 0 \leq t \leq 1$. $(5 \sqrt{5}-1) / 122 \sqrt{5}-1$ $(\sqrt{5}-6) / 2(36 \sqrt{6}-1) / 82 \sqrt{6}-3$

Let be the curve $(t)=t \subset+t^{2} \supset+t, 0 \leq t \leq 1$. Compute $\int_{x}^{3} z d x+x y d y+2 y z^{2} d z$. $11 / 53 / 54 / 52 / 5$
Let $=-z^{2} \subset+e^{z} \supset+\left(e^{z} y-2 x z\right)$ and let $(t)=t \subset+t^{2} \supset+t^{3}, 0 \leq t \leq 1$. Evaluate $\int_{C} d$. $e-110$ $e-e^{-1} 2 e-1$

Use Green's Theorem to compute $\int_{\mathcal{C}}\left(y^{3}+y\right) d x+3 y^{2} x d y$ where \mathcal{C} is $x^{2}+y^{2}=9$ oriented counterclockwise. $-9 \pi 3 \pi 06 \pi-9 \pi / 4$

Let Σ be the portion of the plane $2 x+y-z=0$ above the rectangle $0 \leq x \leq 1,0 \leq y \leq 2$ in the $x y$-plane. Compute $\Sigma z^{2}-4 x y d \sigma$.
$16 \sqrt{6} / 316 / 332 \sqrt{2} 32 \sqrt{3} 32 / 3$

Let Σ be the portion of the hyperboloid $z=x^{2}-y^{2}$ inside the cylinder $x^{2}+y^{2}=1$ with an upward pointing normal and let $(x, y, z)=3 x \subset+2 y \supset+5 z$. Compute $\Sigma \cdot d \sigma$.
$-\pi / 22 \pi-3 \pi / 2 \pi-\pi$
Let be the intersection of the paraboloid $x^{2}+y^{2}+z=2$ and the plane $x+y+z=1$ oriented counter-clockwise when viewed from above. Use Stokes' Theorem to compute $\int_{x}^{2} d x+y^{2} d y+z^{2} d z$.
$0 \pi / 32 \pi / 34 \pi / 38 \pi / 3$
Let $=x e^{x y} \subset-y e^{x y} \supset+z$, let Σ be the sphere $x^{2}+y^{2}+z^{2}=4$, and let be the outward normal vector to Σ. Evaluate the flux integral ${ }_{\Sigma} d \sigma .32 \pi / 34 \pi / 38 \pi / 316 \pi / 30$

