Math 225: Calculus III
Exam I February 15, 1996

Name:
Section:

Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this answer sheet. There are 16 multiple choice questions worth 5 points each. You start with 20 points.

Suppose the angle between two unit vectors and $i s 30^{\circ}$. Compute the dot product of and.
$\frac{\sqrt{3}}{2} \frac{1}{2} \frac{\sqrt{2}}{2} \frac{\sqrt{3}}{2} \subset+\frac{1}{2} \supset \frac{\sqrt{3}}{2} \subset-\frac{1}{2} \supset$
Find a vector perpendicular to the vectors $=3 \subset-2 \supset+$ and $\equiv-\subset+5 \supset+$.
$-7 \subset-4 \supset+13-3 \subset-10 \supset+3 \subset+2 \supset+17-\frac{4}{9} \subset-\frac{20}{9} \supset-\frac{4}{9}-\frac{18}{7} \subset+\frac{12}{7} \supset-\frac{6}{7}$
Compute the distance from the point $(2,-1,1)$ to the line $x=1-t, y=3 t, z=4+2 t$.
1.961 .621 .392 .151 .05

Determine the distance of the plane $4 x-5 y+2 z=6$ to the origin.
0.892 .110 .541 .271 .71

Find the volume of the box (parallelepiped) with vertices

$$
\begin{aligned}
& (0,0,0),(3,1,1),(1,2,4),(-1,5,5), \\
& (4,3,5),(2,6,6),(0,7,9),(3,8,10)
\end{aligned}
$$

323071924
Which of the following sets of parametric equations describes the line in which the planes $x-3 y+5 z=10$ and $x+y-z=2$ intersect?
$x=4-t, \quad y=-2+3 t, \quad z=2 t x=-2 t, \quad y=6 t, \quad z=4 t x=4+\frac{1}{2} t, \quad y=2+\frac{3}{2} t, \quad z=t$ $x=2-2 t, \quad y=-1-6 t, \quad z=1+4 t x=1+t, \quad y=1-3 t, \quad z=-1+5 t$

Determine the points in which the curve defined by

$$
(t)=\left(t-t^{2}\right) \subset+t \supset+\left(t+t^{2}\right)
$$

intersects the plane $x-7 y+2 z=5$.
$(-20,5,30),(-2,-1,0)(20,-5,25),(2,1,5)(0,0,0),(0,1,3)(-2,2,-21 / 2),(-6,-2,-3 / 2)(-6,3,16)$, $(-12,-1,5)$

Determine which of the following curves is not smooth at some point in its domain.
$(t)=\left(2 t^{3}-3 t^{2}\right) \subset+\left(t^{3}-3 t\right) \supset+\left(t^{2}-2 t\right)(t)=\left(2 t^{3}+3 t^{2}\right) \subset+\left(t^{3}+3 t\right) \supset+\left(t^{2}+2 t\right)(t)=\left(2 t-t^{2}\right) \subset$ $+\left(t^{3}-1\right) \supset+(t-1)^{5}(t)=\cos (t) \subset+\sin (t) \supset+t^{2}(t)=\left(t-e^{t}\right) \subset+\left(t+e^{-t}\right) \supset+\left(t^{3}-3 t\right)$

Calculate the unit normal vector (1) of a curve at $t=1$ given that its unit tangent vector is

$$
\begin{gathered}
(t)=\frac{1}{1+t} \subset+\frac{\sqrt{2 t}}{1+t} \supset+\frac{t}{1+t} \\
-\frac{1}{\sqrt{2}} \subset+\frac{1}{\sqrt{2}}-\frac{1}{4} \subset+\frac{1}{2 \sqrt{2}} \supset+\frac{1}{4}-\frac{1}{(1+t)^{2}} \subset+\frac{1-t}{\sqrt{2}(1+t)^{2}} \supset-\frac{1}{(1+t)^{2}}-\frac{1}{4} \subset-\frac{1}{4}-\frac{1}{(1+t)^{2}} \subset+\frac{1}{\sqrt{2 t}(1+t)^{2}} \supset
\end{gathered}
$$

Suppose a particle initially at rest has acceleration given by $(t)=e^{t} \subset+e^{-t} \supset+2 t$ at time $t \geq 0$. Compute its speed at time $t=1$.
2.091 .650 .731 .382 .92

Find the equation of the plane perpendicular to the curve defined by $(t)=t^{3} \subset-t^{2} \supset+\sin (\pi t)$ at the point $(8,-4,0) .3 x-y+\frac{\pi}{4} z=282 x-y=203 x+2 y=163(x-8)-2(y+4)-\pi z=03 t^{2} x-2 t y+\pi \cos (\pi t) z=0$

Compute the limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{3}+x^{3} y^{2}}{x^{5}+y^{5}}$. does not exist exists, but has many possible values $01 \frac{2}{5}$
Suppose a particle's position at time $t \geq 0$ is described by $(t)=t \cos (t) \subset+t \sin (t) \supset+t^{2}$. Calculate the tangential component of the particle's acceleration.
$\frac{5 t}{\sqrt{1+5 t^{2}}} \frac{4 t}{\sqrt{2+4 t^{2}}} \frac{-\sin (t) \subset-\cos (t) \supset+2 t}{\sqrt{1+4 t^{2}}} \frac{1}{\sqrt{5}}(-\cos (t) \subset-\sin (t) \supset+2) \frac{1}{\sqrt{1+5 t}}$

Which of the following represents the curve traced by $(t)=t \subset+\sin (t) \supset-t, 0 \leq t \leq 4$?

Which of the following integrals gives the length of the curve $(t)=\left(t^{2}-2 t\right) \subset+4 t \supset+\left(t^{2}+2 t\right)$, $0 \leq t \leq 1$?
$2 \sqrt{2} \int_{0}^{1} \sqrt{t^{2}+3} d t \sqrt{2} \int_{0}^{1} t \sqrt{t^{2}+12} d t 2 \int_{0}^{1} \sqrt{t+1} d t \sqrt{2} \int_{0}^{1} \sqrt{t(t+2)} d t 4 \int_{0}^{1} t+1 d t$
Find the equation of the line tangent to the curve $(t)=\left(1-t^{2}\right) \subset+t^{3} \supset+\left(1+t^{4}\right)$ at the point $(0,1,2)$.
$x=-2 t, \quad y=1+3 t, \quad z=2+4 t x=-2 t, \quad y=3 t^{2}, \quad z=4 t^{3} x=1-2 t, \quad y=3 t, \quad z=1+4 t$ $x=-2 t, \quad y=1+3 t^{2}, \quad z=2+4 t^{3} x=t, \quad y=1, \quad z=2+t$

