Math 225: Calculus III
Exam II March 21, 1996

Name: \qquad
Section: \qquad

Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this answer sheet. There are 15 multiple choice questions worth 5 points each. You start with 25 points.

Find parametric equations of the line perpendicular to the surface defined by $x^{2} y-$ $z^{2}=1$ at the point $(1,2,1) . x=1+4 t, y=2+t, z=1-2 t x=1+2 x y t, y=2+x^{2} t$, $z=1-2 z t x=1+t, y=2+2 t, z=1-t x=t, y=2 t, z=-t x=1-4 t, y=2+t$, $z=1+t$

Determine which function below has a graph like the following:

$$
\begin{aligned}
& f(x, y)=y^{3}-y^{2}-x^{2} f(x, y)=y-x-1 f(x, y)=y^{2}-y-x f(x, y)=x-y^{2}+y \\
& f(x, y)=x^{2}-y^{3}+y
\end{aligned}
$$

Compute the slope of the line tangent to the plane curve defined by the equation $x^{2} y^{3}-x+y^{2}=1$ at the point $(1,1) .-1 / 51 / 461-1 / 6$

If $f(x, y, z)=\cos \left(x^{2} y\right) e^{-z}+e^{y^{2}} x^{3}$, compute $f_{x z}(1, \pi / 2,0)$.
$\pi 012-\pi / e$
Suppose $f(x, y)$ satisfies $f_{x}(6,13)=-4$ and $f_{y}(6,13)=3 / 2$. If $x=u v$, and $y=$ $u^{2}+v^{2}$, compute $\frac{\partial f}{\partial v}$ at the point $(u, v)=(3,2)$.
$-65-918$
Find the derivative of $f(x, y, z)=y \log (x+3)-2 x z^{2} e^{y}$ at the point $(-2,0,3)$ in the direction of the vector $=-\subset-2 \supset+2$.
$-2-6(18,36,24)(-18,-72,48)-3$
Compute the gradient of the function $f(x, y, z)=\sin (x y)+y^{3}-x z^{2}$ at the point $(\pi, 1,2)$.
$-5 \subset+(3-\pi) \supset-4 \pi-\subset+3 \supset-4 \pi-(1+4 \pi) \subset+2 \supset-4-\subset+3 \supset-(2-\pi)$ $-5 \subset-\pi \supset-4$

Determine the equation of the plane tangent to the graph of $f(x, y)=x^{3}-3 x^{2} y+2 y^{4}$ at the point $(1,1,0)$.
$3 x-5 y+z=-23 x-y+z=26 x-8 y+z=26 x-4 y-z=23 x-5 y=-2$
Find all the critical points of the function $f(x, y)=5 x^{3}-21 x y^{2}+14 y^{3}+24 x+3$.
$(-2,-2),(2,2)(1.36,0),(-1.36,0),(-2,-2),(2,2)(-2,-2),(-2,2),(2,-2),(2,2)$, $(1.36,0),(-1.36,0),(-2,2),(2,-2)(1.36,0),(-1.36,0)$

Choose the statement below that is true about the function $f(x, y)=e^{-y}\left(x^{2}+y^{2}\right)$.
$(0,2)$ is not a critical point of $f f$ has a local minimum at $(0,2) f$ has a local maximum at $(0,2) f$ has a saddle point at $(0,2)$ none of the above

Find the minimum of $f(x, y)=x^{3}-6 x y+y^{2}$ on the rectangle $0 \leq x \leq 10,0 \leq y \leq 20$.
$-108-106-120-2000$
Find a point on the curve $13 x^{2}+10 x y+13 y^{2}=4$ where the value of the function $f(x, y)=x^{2} y^{2}$ is greater than or equal to its value at any other point on the curve.
$\left(\frac{1}{2},-\frac{1}{2}\right)\left(\frac{1}{3}, \frac{1}{3}\right)(-1,1)\left(1,-\frac{1}{\sqrt{5}}\right)\left(\frac{2}{\sqrt{13}},-\frac{2}{\sqrt{13}}\right)$
Compute $\int_{0}^{1} \int_{0}^{y} e^{y^{2}} d x d y$. $(e-1) / 2 e 0 \frac{1}{2}-e 1$
Reverse the order of integration in the integral $\int_{1}^{2} \int_{1}^{y^{3}} f(x, y) d x d y \int_{1}^{8} \int_{x^{1 / 3}}^{2} f(x, y) d y d x$ $\int_{1}^{y^{3}} \int_{1}^{2} f(x, y) d y d x \int_{1}^{2} \int_{y^{3}}^{1} f(x, y) d y d x \int_{0}^{8} \int_{x^{3}}^{2} f(x, y) d y d x \int_{0}^{8} \int_{0}^{x^{1 / 3}} f(x, y) d y d x$

The area of the region bounded by $y=9-x^{2}$ and the x-axis is 36 . Find the centroid of this region.
$(0,3.6)(0,4.0)(0,2.4)(0,3.2)(0,2.8)$

