Math 225: Calculus III
Exam III April 18, 1996

Name:
Section: \qquad

Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this answer sheet. There are 15 multiple choice questions worth 5 points each. You start with 25 points.

Compute the area of the region that lies inside the cardioid $r=2-\cos (\theta)$ above the x-axis.
$\frac{9 \pi}{4} 2 \pi \frac{15 \pi}{4} \quad \frac{7 \pi}{2} \quad \frac{3 \pi}{2}$
Let D be the solid in the first octant below the plane $2 x+2 y+z=2$. Suppose the density of D is given by $\delta(x, y, z)=2-z$. Which of the following integrals gives the total mass of D.
$\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{2-2 x-2 y} 2-z d z d y d x \int_{0}^{2} \int_{0}^{2-z} \int_{0}^{2-2 x-2 y} 1 d z d y d x \int_{0}^{1} \int_{0}^{1-x} \int_{0}^{2-z} 2-2 x-$ $2 y d z d y d x \int_{0}^{1} \int_{0}^{2-x} \int_{0}^{2-2 y} 2-z d z d y d x \int_{0}^{2} \int_{0}^{2-x} \int_{0}^{2-2 x-2 y} 2-z d z d y d x$

Find the volume of the solid bounded above by the paraboloid $x^{2}+y^{2}+z=4$ and below by the $x y$-plane.
$8 \pi \frac{32 \pi}{3} 16 \pi \frac{9 \pi}{2} \frac{25 \pi}{3}$
Let D be the solid bounded above by $\rho=2 \sin (\phi)$ and below by $\phi=\pi / 2$ in spherical coordinates. Compute ${ }_{D} z d V$.
$4 \pi / 32 \pi / 3 \pi 2 \pi \pi^{2} / 2$
Let R be the region bounded by the lines

$$
\begin{array}{cc}
x+y=1, & x+y=2 \\
x-2 y=-2, & x-2 y=1
\end{array}
$$

Determine which of the following integrals gives the value of $R_{R} x y d A$ after the substitution $u=x+y, v=x-2 y$.
$\int_{-2}^{1} \int_{1}^{2} \frac{1}{27}(u-v)(2 u+v) d u d v \int_{-2}^{1} \int_{1}^{2} \frac{1}{9}(v-u)(2 u+v) d u d v \int_{-2}^{1} \int_{1}^{2}(x+y)(x-2 y) d x d y$ $\int_{1}^{2} \int_{-2}^{1} \frac{1}{3}(x+y)(2 y-x) d y d x \int_{1}^{2} \int_{-2}^{1} \frac{1}{3} u v d u d v$

Determine which of the following represents the vector field $(x, y)=-\frac{y}{5} \subset+\frac{x}{5} \supset$.

Let $(x, y)=\left(x^{3}+y z\right) \subset+\left(y^{3}+x z\right) \supset+\left(z^{3}+x y\right)$. Compute \div.
$3\left(x^{2}+y^{2}+z^{2}\right)\left(3 x^{2}+y+z\right) \subset+\left(3 y^{2}+x+z\right) \supset+\left(3 z^{2}+x+y\right) 3 x^{2} \subset+3 y^{2} \supset+3 z^{2}$ $3\left(x^{2}+y^{2}+z^{2}\right)+2(x+y+z) 0$

Let $(x, y)=e^{-y} \cos (x) \subset+e^{-y} \sin (x) \supset+z$. Compute .
$2 e^{-y} \cos (x)-2 e^{-y} \sin (x) 1-2 e^{-y} \sin (x)-e^{-y} \cos (x) \subset-e^{-y} \cos (x) \supset$
Calculate the line integral $\int_{C} x d s$ where C is the curve parameterized by $(t)=t \subset$ $+t^{2} \supset+t, 0 \leq t \leq 1$.
0.9892 .6371 .9053 .8723 .223

Let C be the space curve parameterized by $(t)=\left(t^{2}-1\right) \subset+t^{3} \supset+(t-1), 0 \leq t \leq 1$. Evaluate $\int_{C} z d x+x d y+y d z$.
$-0.483-0.733-0.5-1.235-0.822$
Let C be the plane curve parameterized by $(t)=\sqrt{1+\cos (t)} \subset+\sqrt{1+\sin (t)} \supset$, $0 \leq t \leq \pi$, and let $f(x, y)=\left(x^{2}+y^{2}\right)^{x^{2} y^{2}}$. Calculate $\int_{C}(f) \cdot d$.
$-8 \sqrt{2}-10-\sqrt{2} 4$
Let C be the boundary of the upper half of a circle of radius 1. Use Green's Theorem to evaluate $\int_{C} x y d x+\left(x^{2}+y^{2}\right) d y$
$0-1 / 3-1 / 2-3 / 4-2 / 3$
Evaluate the iterated integral $\int_{0}^{\sqrt{\pi}} \int_{0}^{z} \int_{0}^{y z} \cos \left(y^{2}\right) d x d y d z$.
$\frac{1}{2} \frac{\pi}{2} \sqrt{\pi} \frac{1}{4} \frac{\pi-1}{2}$
Compute $R_{R} e^{-x^{2}-y^{2}} d A$, where R is the region defined by $x^{2}+y^{2} \leq 2$.
$\pi\left(1-e^{-2}\right) 2 \pi e^{-2} 4 \pi 2 \pi\left(e^{-2}-1\right)^{2}\left(1-e^{-2}\right) / 2$
Find the average value of the function $f(x, y)=x y^{2}-z x^{2}$ in the solid region defined by $0 \leq x \leq 2,0 \leq y \leq 3$, and $0 \leq z \leq 1$.
$7 / 31 / 35 / 63 / 211 / 6$

