Math 225: Calculus III
Exam I February 11, 1997

Name: \qquad
Section: \qquad

Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this answer sheet. There are 15 multiple choice questions worth 5 points each. You start with 25 points.

Find the distance from the point $(2,1,-1)$ to the z-axis. $\sqrt{5} 1 \sqrt{3} \sqrt{2} 2$
Find the area of the parallelogram with vertices at the points $(0,0,0),(-3,1,2)$, $(1,1,4)$, and $(-2,2,6) .14 .69713 .25012 .76515 .91311 .832$

Which of the following vectors is perpendicular to $\check{=} \subset-3 \supset+5 . \subset+2 \supset+4 \subset+\supset$ $5 \subset+-\subset+\supset+2 \subset+3 \supset-$

Find the angle in radians between the vectors $\check{=} \subset-2 \supset+$ and $=\subset-\supset . \pi / 6 \pi / 3$ $\pi / 4 \pi 4 \pi / 3$

Let $=-\subset+\supset+3$ and $\equiv 4 \subset+$. Compute $\times_{_} 1+13 \mathrm{~J}-4-7-121+\mathrm{J}-4-4 \mathrm{l}-33 \mathrm{\imath}+5 \mathrm{\jmath}+2$
Find the point where the line $x=-5+2 t, y=6-t, z=2+5 t$ intersects the plane $x-y+2 z=6$. $(-3,5,7)(-1,4,12)(-7,7,-3)(7,0,32)(0,0,2)$

Find the equation of the plane perpendicular to the line $x=1+4 t, y=1-t, z=-3$ passing through the point $(1,1,1) .4 x-y=3 x+y+z=-14 x-y-3 z=0 x+y=2$ $x-2 y+z=0$

Calculate the distance from the origin to the plane $x+y-z=1.0 .5771 .00 .684$ 0.9671 .121

Find a vector perpendicular to the plane $5 x-3 y+z=2.5 \subset-3 \supset+3 \subset-5 \supset$ $\subset+2 \supset-\subset-\supset-22 \subset+3 \supset-5$

Find the equation of the line tangent to the curve $(t)=\left(t^{3}+1\right) \subset-(t-1)^{2} \supset+e^{3 t-3}$ at the point $(2,0,1) . x=2+3 t, y=0, z=1+3 t x=3 t, y=0, z=3 t x=3 t^{2}$, $y=-2(t-1), z=3 e^{3 t-3} x=2+3 t^{3}, y=-2(t-1) t, z=1+3 e^{3 t-3} t x=2+3 t$, $y=-2(t-1), z=1$

A particle's velocity is given by $\check{(} t)=e^{-t} \subset+e^{t} \supset+2 t, t \geq 0$. If the particle is initially at the point $(2,1,1)$, where is it at time $t=1 ?\left(3-e^{-1}, e, 2\right)\left(-e^{-1}, e, 1\right)\left(2-e^{-1}, 1+e, 2\right)$ $\left(-e^{-t}, e^{t}, t^{2}\right)\left(2-e^{-t}, 1+e^{t}, 1+t^{2}\right)$

Calculate the length of the curve $(t)=3 t \subset+t^{2} \supset+\frac{4 \sqrt{3}}{3} t^{3 / 2}$ from $t=0$ to $t=2$. 10 8641

Suppose a particle's position is given by $(t)=\sin (t) \subset+t \supset+t^{2}$. The tangential component of the particle's acceleration $(t)=a(t)(t)+a(t)(t)$ is

$$
a(t)=\frac{4 t-\cos (t) \sin (t)}{\sqrt{\cos ^{2}(t)+4 t^{2}+1}}
$$

Use this to find the normal component of the acceleration $a(t)$ when $t=\pi . a(\pi)=\frac{2}{\sqrt{1+2 \pi^{2}}}$ $a(\pi)=2 a(\pi)=\frac{4 \pi}{\sqrt{2+4 \pi^{2}}} a(\pi)=4 a(\pi)=\sqrt{2+4 \pi^{2}}$

Compute the limit $\lim _{(x, y) \rightarrow(1,0)} \frac{(x-1)^{2} y}{(x-1)^{2}+y^{2}} .0 \infty$ does not exist $1 \frac{3}{2}$

Determine which of the functions below has the following level curves:

$$
f(x, y)=x^{2}-y^{2} f(x, y)=x^{2}+y^{2} f(x, y)=y-x^{2} f(x, y)=x-y^{2} f(x, y)=x y
$$

