Math 225: Calculus III

Exam II March 20, 1997

Name: \qquad
Section: \qquad

Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this answer sheet. There are 15 multiple choice questions worth 5 points each. You start with 25 points.

Determine which of the following statements is true about the function
$f(x, y)=y e^{x}+x e^{y}$
$f(x, y)$ does not have a critical point at $(-1,-1)$.
$f(x, y)$ has a local minimum at $(-1,-1)$.
$f(x, y)$ has a local maximum at $(-1,-1)$.
$f(x, y)$ has a saddle point at $(-1,-1)$.
none of the above
Let $f(x, y)=\left(1+x^{2}\right)^{\sin (x)}+x y^{2}$. Compute $f_{x y}$.
$2 y$
$2 x y$
$\left(1+x^{2}\right)^{\sin (x)} \log \left(1+x^{2}\right) 2 x+2 x$
$\sin (x)\left(1+x^{2}\right)^{\sin (x)-1}+2 y$
$\left(1+x^{2}\right)^{\sin (x)-1}\left(\sin (x)+2 x \cos (x) \log \left(1+x^{2}\right)\right)+2 x y$
Suppose $z=x^{2} \cos (1+y)$ and $x=u^{3} \log (v), y=v^{2}-u^{2}$. Determine which of the following expressions gives $z / d u$.
$6 x u^{2} \cos (1+y) \log (v)+2 x^{2} u \sin (1+y)$
$\frac{2 x u}{v} \cos (1+y)-2 x^{2} v \sin (1+y)$
$2 x \cos (1+y)-x^{2} \sin (1+y)$
$2 x u^{3} \cos (1+y) \log (v)-x^{2} \sin (1+y)\left(v^{2}-u^{2}\right)$
$6 x u^{2} \cos (1+y) \log (v)-2 x^{2} v \sin (1+y)$
Find the direction in which the function $f(x, y, z)=x y^{3}-x^{2} z^{2}$ increases most rapidly at the point $(2,-1,3)$.
$-37 \subset+6 \supset-24$
$-\subset+3 \supset-6$
$-4 \subset+11 \supset-5$
$-19 \subset+12 \supset-4$
$-29 \subset+15 \supset-2$
Let $f(x, y)=e^{x y}-x^{2}-y^{2}$. Considering all possible unit direction vectors $\breve{ }$, find the largest value attained by D
fatthepoint $(0,2)$.
$2 \sqrt{5}$
2
$2 \sqrt{3}$
4
$2 \sqrt{2}$
Find the equation of the line perpendicular to the curve $x^{3}-3 y^{3}=3$ at the point $(3,2)$.

$$
4 x+3 y=18
$$

$$
\begin{aligned}
& 4 x-3 y=6 \\
& 3 x-4 y=1 \\
& 3 x+4 y=17 \\
& 9 x+8 y=43
\end{aligned}
$$

Find the equation of the plane tangent to the surface defined by $x^{2}-x y+y z=5$ at the point $(1,2,3)$.
$y+z=5$
$(2 x-y)(x-1)+(z-x)(y-z)+y(z-3)=0$
$x+y+z=6$
$(x-1)+2(y-2)+6(z-3)=0$
$x+2 y+z=10$
Find the critical points of the function $f(x, y)=8\left(x^{2}+y^{2}\right)-\frac{1}{x y}$.
$(1 / 2,-1 / 2),(-1 / 2,1 / 2)$
$(1 / 2,1 / 2)$
$(1 / 2,1 / 2),(-1 / 2,1 / 2),(1 / 2,-1 / 2)$
$(1 / 2,1 / 2),(-1 / 2,1 / 2),(1 / 2,-1 / 2),(-1 / 2,-1 / 2)$
$(1 / 2,1 / 2),(-1 / 2,-1 / 2)$
Determine which of the graphs below corresponds to the function

$$
f(x, y)=2 x^{3} y-y^{2}-6 x
$$

As a particle moves around an elliptical path, $x^{2}+2 y^{2}=1$, its height above the ground is given by $2+6 x^{2} y+2 y^{3}$. Compute the maximum height the particle achieves. 3.789
2.707
0.211
1.293
4.211

Find the maximum value of the function $f(x, y)=\left(x^{2}-x\right)\left(y^{2}-y\right)$ on the rectangle $0 \leq x \leq 1,0 \leq y \leq 1$.
0.0625
0.125
0.5
0.25
0.0

The pressure at a point (x, y) on an square plate, $0 \leq x \leq a, 0 \leq y \leq a$, is given by $P(x, y)=x y(a-x)$. Find the average pressure on the plate.
$a^{3} / 12$
$a^{5} / 4$
$a^{5} / 6$
$a^{3} / 2$
$a / 3$
Evaluate the double integral $\int_{0}^{\sqrt{\pi}} \int_{0}^{\sqrt{x}} \sin \left(x^{2}\right) y d y d x$.
$1 / 2$
1
$1 / 3$
$1 / 4$
0
Determine which of the following double integrals gives the volume of the region in the first octant that lies under the plane $3 x+2 y+z=4$.

$$
\begin{aligned}
& \int_{0}^{4 / 3} \int_{0}^{2-3 x / 2} 4-3 x-2 y d y d x \\
& \int_{0}^{4} \int_{0}^{3 x+2 y} z d x d y \\
& \int_{0}^{2} \int_{0}^{4-2 x} 4-3 x-2 y d x d y \\
& \int_{0}^{2} \int_{0}^{4-2 y}(4-2 y-z) / 3 d x d y \\
& \int_{0}^{4 / 3} \int_{0}^{2} 3 x+2 y d y d x
\end{aligned}
$$

Reverse the order of integration in the double integral $\int_{0}^{4} \int_{-\sqrt{4-y}}^{\sqrt{4-y}} f(x, y) d x d y$.
$\int_{-2}^{2} \int_{0}^{4-x^{2}} f(x, y) d y d x$
$\int_{-\sqrt{4-y}}^{\sqrt{4-y}} \int_{0}^{4} f(x, y) d y d x$.
$\int_{0}^{2} \int_{-(4+x)^{2}}^{(4+x)^{2}} f(x, y) d y d x$
$\int_{-4}^{4} \int_{0}^{4-x^{2}} f(x, y) d y d x$
$\int_{0}^{2} \int_{0}^{4+x^{2}} f(x, y) d y d x$

