Math 225: Calculus III

Name:_

Final Exam May 8, 1997

Section:

Record your answers to the multiple choice problems by placing an x through one letter for each problem on this answer sheet. There are 25 multiple choice questions worth 5 points each. You start with 25 points.

Compute $\lim_{(x,y)\to(0,0)} \frac{y+xy}{x^2+xy^2+y}$ 1 0 1/2 2 does not exist

Let $(x, y, z) = \frac{x}{y} \subset +\frac{y}{z} \supset +\frac{z}{x}$. Compute $\frac{y}{z^2} \subset +\frac{z}{x^2} \supset +\frac{x}{y^2} + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} + \frac{-y \subset +z \supset -x}{x^2 + y^2 + z^2}$ $\frac{x^3z^2 + x^2y^3 + y^2z^3}{x^2y^2z^2} \ \frac{1}{x} \subset +\frac{1}{y} \supset +\frac{1}{z}$

Compute the angle between the planes 2x + y + z = 1 and x + 2y - z = 1. $\pi/3$ 0 $\pi/2$ $\pi/4 \ 3\pi/4$

Determine the equation of the plane through the point (3,0,1) that is parallel to the vectors $\subset + \supset -$ and $\subset - \supset$.

$$x + y + 2z = 5$$
 $x + y - z = 2$ $x - y = 3$ $x + 2y + z = 4$ $x - y - 2z = 1$

 $x+y+2z=5 \ x+y-z=2 \ x-y=3 \ x+2y+z=4 \ x-y-2z=1$ Suppose a particle's position is given by $r(t)=e^{t^2-1}\subset +e^{1-t^2}\supset +t$. Determine the particle's speed at the point (1,1,-1). $3\ 2\subset -2\supset +\sqrt{4e^2+4e^{-2}+1}\ 1$ Consider the curve parameterized by $r(t)=\frac{t^2}{2}\subset +t\supset -t$. Calculate the unit normal vector to this curve at the point $(1,\sqrt{2},-\sqrt{2})$. $\frac{1}{\sqrt{2}}\subset -\frac{1}{2}\supset +\frac{1}{2}$ $\frac{1}{\sqrt{2}}\subset +\frac{1}{2}\supset -\frac{1}{2}$ $\tfrac{1}{\sqrt{2}}\subset +\tfrac{1}{2}\supset +\tfrac{1}{2}\ \tfrac{1}{\sqrt{2}}\subset -\tfrac{1}{2}\supset -\tfrac{1}{2}\ \tfrac{-1}{\sqrt{2}}\subset -\tfrac{1}{2}\supset +\tfrac{1}{2}$

Let
$$f(x, y, z) = \frac{x^2 - yz}{xy^2}$$
. Compute $f_{xyz} = \frac{-1}{x^2y^2} = \frac{-2}{x^2y^3} = \frac{-2}{x^3y^2} = \frac{-4}{x^3y^3} = \frac{-1}{xy}$

Let $f(x,y,z) = \frac{x^2 - yz}{xy^2}$. Compute $f_{xyz} = \frac{-1}{x^2y^2} = \frac{-2}{x^2y^3} = \frac{-2}{x^3y^2} = \frac{-4}{x^3y^3} = \frac{-1}{xy}$. If $z = \cos(x^2 - y^2)$ and $x = e^u$, $y = ue^{-v}$, determine which of the following expressions

$$-2(xe^{u} - ye^{-v})\sin(x^{2} - y^{2}) \ 2(e^{2u} - e^{-2v})\sin(e^{2u} - e^{-2v}u^{2}) \ -2u^{2}e^{-2v}\sin(x^{2} - y^{2}) \ -2e^{2u}\sin(x^{2} - y^{2}) -2(x - y)\sin(x^{2} - y^{2})$$

Calculate the derivative of the function $f(x,y,z) = xy^2 - z^3$ at (-1,2,1) in the direction of the vector (2, 1, 2). -2/3 1/3 -2 1 0

Determine the equation of the plane tangent to the surface $z^2 = x^3 + y^3$ at the point

$$x + 4y - 2z = 3(x - 1) + 2(y - 4) + 3(z + 2) = 0(x - 1) + 4(y - 2) = 0x + 2y = 0$$

 $3x + 4y - 6z = 9$

Determine which of the following statements describes the function

$$f(x,y) = y^2(x-1) + x^2$$

f(x,y) has a saddle point at (0,0). f(x,y) has a local minimum at (0,0). f(x,y) has a local maximum at (0,0). f(x,y) has a critical point at $(1,\sqrt{2})$. f(x,y) does not have a critical point at (0,0).

Find the maximum of the function f(x,y) = x(y+1) subject to the constraint $2x^2 + y^2 = 1.$

 $0.919\ 1.431\ 1.564\ 1.111\ 1.333$

Find all the critical points of the function $f(x,y) = x^3y - xy + 3x^2 + 2x$. (0,2), (1,-4), (-1,2), (0,2), (1,-4), (1,4), (-1,2), (0,2), (1,-4), (-1,2), (1,2), (0,2), (-1,4),(1,-2) (0,2), (-1,-4), (1,-4), (-1,2), (1,2)

Reverse the order of integration in the integral $\int_{1}^{2} \int_{\sqrt{x-1}}^{\sqrt[3]{x-1}} f(x,y) \, dy \, dx$.

$$\int_{0}^{1} \int_{y^{3}+1}^{y^{2}+1} f(x,y) \, dx \, dy \int_{\sqrt{x-1}}^{\sqrt[3]{x-1}} \int_{1}^{2} f(x,y) \, dx \, dy. \int_{1}^{2} \int_{y^{2}+1}^{y^{3}+1} f(x,y) \, dx \, dy \int_{0}^{1} \int_{1+\sqrt[3]{y}}^{1+\sqrt{y}} f(x,y) \, dx \, dy \int_{0}^{2} \int_{y^{2}}^{y^{3}} f(x,y) \, dx \, dy$$

Find the area of the region below the curve $r = \cos(\theta) - \sin(\theta)$ and above the x-axis.

$$\frac{\pi-2}{8}$$
 $\frac{\pi-1}{4}$ $\frac{3\pi-2}{4}$ $\frac{\pi-3}{4}$ $\frac{2\pi-3}{8}$

Find the average height above the xy-plane of the points in the solid region of the first octant below the inverted cone $z = 2 - \sqrt{x^2 + y^2}$. The volume of the solid is $2\pi/3$.

$$1/2 \ 2/3 \ \pi/2 \ \pi/3 \ 7/8$$

Let D be the solid region between the spheres of radii 1 and 2. Compute the integral $_Dz^2\,dV$.

$$\frac{124\pi}{15}$$
 $\frac{12\pi}{5}$ 24π $\frac{8\pi}{3}$ 4π

Consider the change of variables $u=\sqrt{x+y},\ v=\sqrt{x-y}$. Compute the Jacobian determinant $\frac{\partial(x,y)}{\partial(u,v)}$.

$$-2uv \frac{1}{2uv} \frac{1}{4\sqrt{x^2-y^2}} - \frac{1}{2\sqrt{x+y}} \frac{1}{4}$$

Let be the semi-circle $y = \sqrt{1-x^2}$ and let be the unit tangent vector to oriented counterclockwise. Determine which of the following integrals gives the value of $\int_{\cdot}^{\cdot} ds$ where $(x,y) = y^2 \subset +x^2 \supset$.

$$\int_0^\pi \cos^3(t) - \sin^3(t) \, dt \, - \int_0^\pi \cos(t) \, dt \, \int_0^\pi \cos(t) + \sin(t) \, dt \, \int_0^\pi \sin^2(t) - \cos^2(t) \, dt \, \int_0^\pi dt$$

Compute the line integral $\int_y ds$ where is the curve parameterized by $(t)=t^4\subset -t^2\supset$, $0\leq t\leq 1$.

$$\frac{1}{12}(5^{3/2}-1)$$
 $\frac{1}{6}(3^{1/2}-1)$ $\frac{1}{3}(2^{3/2}-1)$ $\frac{1}{4}(3^{5/2}-1)$ $\frac{1}{2}(6^{1/2}-1)$

Let be the curve parameterized by $(t) = \cos(3t) \subset +\sin(2t) \supset +t$, $0 \leq t \leq 2\pi$. Calculate $\int_y e^{xy} dx + x e^{xy} dy + dz$.

 2π 1 0 $e-2\pi$ e

Determine which of the following integrals gives the area of the surface $z^4 = 4(x^2 + y^2)$, $0 \le z \le \sqrt{2}$.

 $\int_{0}^{2\pi} \int_{0}^{1} \sqrt{r^{2} + r/2} \, dr \, d\theta \int_{0}^{2\pi} \int_{0}^{1} 4r \sqrt{4r^{2} + z^{2}} \, dr \, d\theta \int_{0}^{2\pi} \int_{0}^{1} 8\sqrt{2}r \, dr \, d\theta \int_{0}^{2\pi} \int_{0}^{1} 4r^{2} \sqrt{2} \, dr \, d\theta \int_{0}^{2\pi} \int_{0}^{1} 4r^{2} \sqrt{4r^{2} + r} \, dr \, d\theta$ Let Σ be the portion of the paraboloid $z = x^{2} + y^{2}$ in the first octant below z = 2 and

let be the unit downward normal vector to Σ . Compute the flux integral

$$\Sigma(y \subset -x \supset +) \cdot d\sigma$$

$$-\frac{\pi}{2} \frac{4\pi}{3} 0 4\pi - \frac{5\pi}{2}$$

Let Σ be the portion of the parabolic sheet $z=1-x^2$ that lies inside the square $-1 \le x \le 1, \ -1 \le y \le 1$, and let be the boundary of Σ oriented counterclockwise when viewed from above. Use Stokes' Theorem to rewrite the line integral $\int_{(} y \subset +z \supset +x) \cdot d$ as a double integral.

$$-\int_{-1}^{1} \int_{-1}^{1} (2x+1) \, dy \, dx \, \int_{-1}^{1} \int_{-1}^{1} (\subset + \supset +) \, dy \, dx \, \int_{-1}^{1} \int_{-1}^{1} (x+y+x^2) \, dy \, dx - \int_{-1}^{1} \int_{-1}^{1} (2xy+x^2) \, dy \, dx + \int_{-1}^{1} \int_{-1}^{1} (y + z - z) \, dy \, dx + \int_{-1}^{1} \int_{-1}^{1} (x+y+x^2) \, dy \, dx + \int_{-1}^{1} \int_{-1}^{1} (2xy+z) \, dy \, dx + \int_{-1}^{1} \int_{-1}^{1} (x+y+x^2) \, dy \, dx + \int_{-1}^{1} \int_{-1}^{1} (2xy+z) \, dy \, dx + \int_{-1}^{1} \int_{-1}^{1} (x+y+z) \, dy \, dx + \int_{-1}^{1} \int_{-1}^{1} (x+z) \, dx + \int_{-1}^{1} \int_{-1}^{1} (x+z)$$

Let D be the solid cylinder defined by $x^2 + y^2 \le 4$, $0 \le z \le 3$. Let Σ be the boundary of this solid and let be its outward unit normal vector. Use the Divergence Theorem to compute the flux integral $\Sigma(xy \subset -y^2 \supset +z^2) \cdot d\sigma$.

 36π 18π 12π 9π 6π