MATH 225: Calculus III

Exam I September 25, 2001

Name: \qquad

Instructor: \qquad

Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this page. There are 8 multiple choice questions worth 5 points each and 4 partial credits problems worth 10 points each. You start with 20 points. On the partial credit problems you must show your work and all important steps to receive credit.

You may use a calculator if you wish.

Find the angle between the planes $x-y+2 z=3$ and $2 x+y+z=-5$.
$\pi / 3 \pi / 6 \pi / 23 \pi / 4 \pi / 4$
Compute the arc length of the curve parameterized by $\mathbf{r}(t)=2 t \mathbf{i}+t^{2} \mathbf{j}+\frac{1}{3} t^{3} \mathbf{k}$ for $0 \leq t \leq 1$.
$\frac{7}{3} \frac{\sqrt{46}}{3} \frac{17}{12} \quad \frac{10}{3} \frac{\sqrt{161}}{12}$
Find the parametric equations of the line tangent to the curve $\mathbf{r}(t)=\left\langle t^{2}, t, \ln t\right\rangle$ at the point ($1,1,0$).
$x=1+2 t, y=1+t, z=t x=2 t, y=1, z=\frac{1}{t} x=2+t, y=1+t, z=1 x=1+2 t^{2}$, $y=1+t, z=1 x=1+t, y=1+2 t, z=-t$

The position of a moving particle at time t is given by $\mathbf{r}(t)=\langle\cos (2 t), t, \sin (2 t)\rangle$. Determine the tangential and normal components of the acceleration at $t=0$.
$a_{T}=0, a_{N}=4 a_{T}=-4, a_{N}=0 a_{T}=\sqrt{5}, a_{N}=\sqrt{11} a_{T}=\sqrt{5}, a_{N}=0 a_{T}=1$, $a_{N}=\sqrt{5}$

Determine which of the following plots represents the curve traced by the vector function $\mathbf{r}(t)=\langle 2 \cos (4 t), 2 \sin (4 t), t\rangle$.

Determine which of the following symmetric equations gives a line that is parallel to the vector $\mathbf{i}+2 \mathbf{j}+(1 / 2) \mathbf{k}$.
$2(x+1)=y-3=4(z-1) x+1=2 y+1=(1 / 2) z+12 x=y=(1 / 2) z x=2 y$ and $z=1 y=(1 / 4) z$ and $x=0$

Find a vector that is orthogonal to the plane containing the points $(1,0,1),(2,-1,1)$, and $(0,0,3)$.
$2 \mathbf{i}+2 \mathbf{j}+\mathbf{k}-\mathbf{i}+\mathbf{k} 2 \mathbf{i}-\mathbf{j}-2 \mathbf{k} 2 \mathbf{i}+3 \mathbf{j}+4 \mathbf{k} \mathbf{i}+\mathbf{j}-\mathbf{k}$
Determine the function that corresponds to the following contour map.

$$
f(x, y)=y e^{x} f(x, y)=x y-1 f(x, y)=x^{2}-y f(x, y)=y e^{-x} f(x, y)=x-y^{2}
$$

9. Find a vector function that traces out the curve of intersection of the ellipsoid $(x-1)^{2}+$ $3(y-1)^{2}+(z-1)^{2}=1$ and the plane $y=x$.
10. The force acting on a moving particle of mass $m=2$ at time t is

$$
\mathbf{F}(t)=e^{t} \mathbf{i}+e^{-t} \mathbf{j}+t \mathbf{k}
$$

If the particle's initial position and velocity are $\mathbf{r}(0)=\langle 0,0,1\rangle$ and $\mathbf{v}(0)=\langle 0,1,0\rangle$, respectively, determine the particle's position vector, $\mathbf{r}(t)$, for any $t \geq 0$.
11. Let $\mathbf{r}(t)=t \mathbf{i}+t \mathbf{j}+\frac{t^{2}}{2} \mathbf{k}$. Find the unit tangent vector, $\mathbf{T}(0)$, the unit normal vector, $\mathbf{N}(0)$, and the unit binormal vector $\mathbf{B}(0)$ at $t=0$.
12. Evaluate the limit

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{y^{4}+2 x^{3} y}{\left(x^{2}+y^{2}\right)^{2}}
$$

or show it does not exist.

