Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this page. There are 8 multiple choice questions worth 5 points each and 4 partial credits problems worth 10 points each. You start with 20 points. On the partial credit problems you must show your work and all important steps to receive credit.

You may use a calculator if you wish.
$x^{2}+2 y^{2}+z^{2}-x z=6$ at the point $(0,1,2)$.
$x-2 y-2 z=-6 x-y-z=-3 x-2 y=-22 x-y-z=-3 x+2 y+2 z=0$
Determine which of the following statements is true about the function $f(x, y)=x y+x^{4} / 4+y^{3} / 3$.
$(0,0)$ is a saddle point and $(-1,1)$ is a local minimum. $(0,0)$ is a local maximum and $(-1,1)$ is a local minimum. $(0,0)$ is a saddle point and $(-1,1)$ is a local maximum. $(0,0)$ and $(-1,1)$ are both saddle points. $(0,0)$ and $(-1,1)$ are both local maxima.

Evaluate $\int_{0}^{1} \int_{x}^{1} e^{y^{2}} d y d x$ by first reversing the order of integration.
$(e-1) / 2 e-1 e / 2 e 2-e / 2$
Let E be the solid region below the inverted cone $z=1-\sqrt{x^{2}+y^{2}}$ and above the $x y$-plane. If the density is uniform, $\rho(x, y, z)=1$, and the total mass of E is $\pi / 3$, find the z-coordinate of the center of mass of E.

1/4 1/3 1/2 3/8 2/9
Let D be the region in the plane bounded by the curves $y=x$ and $y=x^{2}$. Evaluate $\iint_{D} x^{2} d A$.
$1 / 201 / 121 / 61 / 281 / 14$
Find the area of the part of the surface $z=1+x$ lying above the triangle in the $x y$-plane with vertices $(0,0),(1,0)$ and $(0,1)$.
$\sqrt{2} / 2 \sqrt{2} \sqrt{3} \sqrt{3} / 31 / 4$
Let E be the solid region in the first octant bounded by the planes $x=0, y=0, z=0, x+z=2$, and $y+z=2$, and lying below the plane $z=1$. Find $\iiint_{E} y d V$.

$$
15 / 87 / 411 / 623 / 2
$$

Determine which of the following integrals gives the mass of the solid region between the spheres $x^{2}+$
$y^{2}+z^{2}=4$ and $x^{2}+y^{2}+z^{2}=2 z$ above the $x y$-plane, if the density is given by the distance to the z-axis.

$$
\begin{aligned}
& \quad \int_{0}^{2 \pi} \int_{0}^{\pi / 2} \int_{2 \cos \phi}^{2} \rho^{3} \sin ^{2} \phi d \rho d \phi d \theta \int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{2 \cos \phi} \rho^{3} \sin \phi \cos \phi d \rho d \phi d \theta \int_{0}^{2 \pi} \int_{0}^{\pi / 2} \int_{2}^{2 \sin \phi} \rho^{3} \sin ^{2} \phi d \rho d \phi d \theta \int_{0}^{2 \pi} \int_{0}^{\pi} \int_{2 \sin \phi}^{4} \rho^{2} \operatorname{si} \\
& \int_{0}^{2 \pi} \int_{0}^{\pi / 2} \int_{0}^{4} \rho^{3} \sin ^{2} \phi \cos \phi d \rho d \phi d \theta
\end{aligned}
$$

9. Find the absolute maximum and minimum values of the function $f(x, y)=4 x-4 x^{2}+y^{2}$ on the closed triangular region with vertices $(0,0),(1,0)$, and $(0,1)$.
10. Use Lagrange multipliers to find the absolute maximum and minimum of $f(x, y, z)=4 x-2 z$ subject to the constraint $x^{2}+y^{2}+z^{2}=16$.
11. Find the area of the region inside the cardioid $r=1+\sin \theta$ and outside the cardioid $r=1-\sin \theta$.
12. Let R be the region inside the square with vertices $(\pm 1,0)$ and $(0, \pm 1)$. Evaluate $\iint_{R} \sqrt{1+y-x} \cos (y+x) d A$ by making an appropriate change of variables. [Hint: Start with $u=y+x$ and $v=y-x$.]
