MATH 225: Calculus III
Final Exam December 17, 2002

Name: \qquad
Instructor: \qquad

Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this page. There are 20 multiple choice questions worth 6 points each. You start with 30 points.

You may use a calculator if you wish.

Let θ be the angle between the vectors $\mathbf{a}=\langle-2,4,1\rangle$ and $\mathbf{b}=\langle-1,2,-1\rangle$. Find $\cos \theta$.
$\frac{3}{\sqrt{14}} \frac{9}{\sqrt{6}} \frac{9}{\sqrt{21}} \frac{1}{14} \frac{\sqrt{2}}{\sqrt{7}}$
The motion of a particle is described by $\mathbf{r}(t)=\left\langle 2 t^{3}-2 t, 3-2 t^{2}, 3 t-\ln t\right\rangle, t \geq 0$. Find the unit tangent vector at time $t=1$.
$\frac{1}{3}\langle 2,-2,1\rangle \frac{1}{\sqrt{5}}\langle 0,1,2\rangle \frac{1}{3}\langle 2,2,1\rangle \frac{1}{41}\langle 4,4,3\rangle \frac{1}{\sqrt{5}}\langle-1,2,0\rangle$
Suppose z is defined implicitly as a function of x and y by $x y z=\ln (x+y+z)$. Find $\frac{\partial z}{\partial x}$.
$\frac{1-y z(x+y+z)}{x y(x+y+z)-1} \frac{y z}{1-x y(x+y+z)} \frac{1}{x y(x+y+z)} \frac{1+x y}{x+y+z+1} \frac{y z(x+y+z)}{x y(x+y+z)+1}$
Determine which of the following statements applies to the function $f(x, y)=x^{3}-3 x^{2}+3 y^{2}$.
$(0,0)$ is not a critical point of $f f$ has a saddle point at $(2,0) f$ has a local maximum at $(0,0) f$ has a local minimum at $(2,0)$ none of the above

Find the maximum value of the function $f(x, y)=x-y$ on the ellipse $4 x^{2}+y^{2}=1$.
$\begin{array}{llll}\frac{\sqrt{5}}{2} & \frac{3 \sqrt{3}}{4} & \sqrt{2} & \frac{1}{2} 1\end{array}$
Evaluate $\int_{0}^{1} \int_{x^{2}}^{1} x^{5} e^{y^{4}} d y d x$.
$\frac{e-1}{24} \frac{e}{4}-\frac{1}{4 e} \frac{e}{12} \frac{e}{12}-1 \frac{e-1}{4}$
Let E be the solid tetrahedron with vertices $(0,0,0),(1,0,0),(0,2,0)$, and $(0,0,4)$. Determine which of the following integrals gives $\iiint_{E} f(x, y, z) d V$.
$\int_{0}^{1} \int_{0}^{2-2 x} \int_{0}^{4-2 y-4 x} f(x, y, z) d z d y d x \int_{0}^{1} \int_{0}^{2} \int_{0}^{4} f(x, y, z) d x d y d z \int_{0}^{1} \int_{0}^{2-x} \int_{0}^{x+2 y} f(x, y, z) d z d y d x$ $\int_{0}^{2} \int_{0}^{4-2 y} \int_{0}^{4 x+2 y} f(x, y, z) d z d x d y \int_{0}^{2} \int_{0}^{1-2 y} \int_{0}^{4-4 x-2 y} f(x, y, z) d z d x d y$

Find the average of the function $f(x, y, z)=z$ in the region under the unit hemisphere sphere, $0 \leq z \leq \sqrt{1-x^{2}-y^{2}}$.

3/8 3/16 1/2 1/4 5/16
Let $f(x, y)=x^{3}+x y^{2}$ and suppose x and y are functions of u and v. If $\frac{\partial x}{\partial u}=3$, $\frac{\partial x}{\partial v}=-2, \frac{\partial y}{\partial u}=-4$ and $\frac{\partial y}{\partial v}=7$ when $(x, y)=(1,2)$, compute $\frac{\partial f}{\partial u}$ at that point.
$511-301449$
Find the mass of a thin wire in the shape of the parabola $x=1-y^{2}, 0 \leq y \leq \sqrt{2}$, if the density is given by $\delta(x, y)=y$.
$13 / 6 \frac{1}{3}\left(5^{3 / 2}-1\right) \frac{1}{12}\left(2^{3 / 4}-1\right) 111 / 12$
Let \mathcal{C} be the curve $\mathbf{r}(t)=\left\langle t-1, t^{2}+1, \frac{1}{t}\right\rangle, 1 \leq t \leq 2$. Compute $\int_{C}\left(x^{2}-y+y z\right) d y$.
$-\frac{8}{3} \frac{4}{3}-\frac{3}{4} 20$

Find the equation of the plane tangent to the surface parameterized by $\mathbf{r}(u, v)=\left\langle u^{2}, 2 u v, v^{3}\right\rangle$ at the point $(9,6,1)$.
$x-3 y+6 z=-39 x+6 y+z=06 x+2 y+3 z=-696 x-18 y+z=-49 x+y-3 z=12$
Evaluate the surface integral $\iint_{S} z^{2} d S$ where S is the part of the cone $z=\sqrt{x^{2}+y^{2}}$ between $z=1$ and $z=2$.
$15 \pi \sqrt{2} / 28 \pi \sqrt{3} 13 \pi \sqrt{3} / 37 \pi \sqrt{2} / 214 \pi / 3$
Compute the flux integral $\iint_{S} \mathbf{F} \cdot \mathbf{n} d S$ where $\mathbf{F}(x, y, z)=\left\langle y^{2},-x y, z\right\rangle$ and S is the paraboloid $z=x^{2}+y^{2}$ below $z=1$ with upward orientation.
$\pi / 2 \pi-\pi / 3 \pi / 4-2 \pi / 3$
Calculate $\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}(x, y, z)=\left\langle 2 x z-y, 2 y-x+z, x^{2}+y+2 z\right\rangle$, and \mathcal{C} is the curve $\mathbf{r}(t)=\left\langle t, t^{2}, e^{t-t^{2}}\right\rangle$ for $0 \leq t \leq 1$.

203-11
Use Green's Theorem to calculate the area of the region in the plane enclosed by the curve $\mathbf{r}(t)=\left\langle\cos t, \sin ^{3} t\right\rangle, 0 \leq t \leq 2 \pi$.
$3 \pi / 4 \pi / 2 \pi 12$
Find $\operatorname{curl} \mathbf{F}(0,0,0)$ where $\mathbf{F}(x, y, z)=\left\langle e^{x} \sin y, e^{x} \cos y, x+z\right\rangle$.
$\langle 0,-1,0\rangle\langle 0,0,0\rangle\langle 1,0,0\rangle\langle 0,0,-1\rangle\langle 1,1,1\rangle$
Let \mathcal{C} be the intersection of the cylinder $(x-1 / 2)^{2}+y^{2}=1 / 4$ and the plane $x+y+z=$ 1, oriented counterclockwise when viewed from above, and let $\mathbf{F}(x, y, z)=\langle z-y, y, x\rangle$. Calculate $\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}$.

$$
\pi / 4 \pi / 2 \pi 2 \pi 0
$$

Let S be the surface $z=1-x^{2}-y^{2}$ above the $x y$-plane with upward orientation, and let $\mathbf{F}(x, y, z)$ be a vector field with $\operatorname{curl} \mathbf{F}(x, y, z)=\left\langle y-4 x z, 2 y z-x, z^{2}\right\rangle$. Compute $\iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathbf{n} d S$.
$0 \pi \pi / 4 \pi / 22 \pi$
Let S be the surface of the cube with vertices $(\pm 1, \pm 1, \pm 1)$ with outward orientation. Calculate the flux of the vector field $\mathbf{F}(x, y, z)=\left\langle e^{y}, e^{x}, z\right\rangle$ across S.

842016

