MATH 225: Calculus III
Practice Exam I September 2002
Find the angle between the planes $x-y+2 z=3$ and $2 x+y+z=-5$.
$\pi / 3 \pi / 6 \pi / 23 \pi / 4 \pi / 4$
Compute the arc length of the curve parameterized by $\mathbf{r}(t)=2 t \mathbf{i}+t^{2} \mathbf{j}+\frac{1}{3} t^{3} \mathbf{k}$ for $0 \leq t \leq 1$.
$\frac{7}{3} \frac{\sqrt{46}}{3} \quad \frac{17}{12} \quad \frac{10}{3} \quad \frac{\sqrt{161}}{12}$
Find the parametric equations of the line tangent to the curve $\mathbf{r}(t)=\left\langle t^{2}, t, \ln t\right\rangle$ at the point ($1,1,0$).
$x=1+2 t, y=1+t, z=t x=2 t, y=1, z=\frac{1}{t} x=2+t, y=1+t, z=1 x=1+2 t^{2}$, $y=1+t, z=1 x=1+t, y=1+2 t, z=-t$

The position of a moving particle at time t is given by $\mathbf{r}(t)=\langle\cos (2 t), t, \sin (2 t)\rangle$. Determine the tangential and normal components of the acceleration at $t=0$.
$a_{T}=0, a_{N}=4 a_{T}=-4, a_{N}=0 a_{T}=\sqrt{5}, a_{N}=\sqrt{11} a_{T}=\sqrt{5}, a_{N}=0 a_{T}=1$, $a_{N}=\sqrt{5}$

Determine which of the following symmetric equations gives a line that is parallel to the vector $\mathbf{i}+2 \mathbf{j}+(1 / 2) \mathbf{k}$.
$2(x+1)=y-3=4(z-1) x+1=2 y+1=(1 / 2) z+12 x=y=(1 / 2) z x=2 y$ and $z=1 y=(1 / 4) z$ and $x=0$

Find a vector that is orthogonal to the plane containing the points $(1,0,1),(2,-1,1)$, and $(0,0,3)$.
$2 \mathbf{i}+2 \mathbf{j}+\mathbf{k}-\mathbf{i}+\mathbf{k} 2 \mathbf{i}-\mathbf{j}-2 \mathbf{k} 2 \mathbf{i}+3 \mathbf{j}+4 \mathbf{k} \mathbf{i}+\mathbf{j}-\mathbf{k}$
Find the directional derivative of $f(x, y)=e^{x \sin (y)}$ at $P(1,0)$ in the direction of $Q(-2,4)$.
$4 / 5-3 / 5-204$
8. Find a vector function that traces out the curve of intersection of the ellipsoid $(x-1)^{2}+$ $3(y-1)^{2}+(z-1)^{2}=1$ and the plane $y=x$.
9. The force acting on a moving particle of mass $m=2$ at time t is $\mathbf{F}(t)=e^{t} \mathbf{i}+e^{-t} \mathbf{j}+t \mathbf{k}$. If the particle's initial position and velocity are $\mathbf{r}(0)=\langle 0,0,1\rangle$ and $\mathbf{v}(0)=\langle 0,1,0\rangle$, respectively, determine the particle's position vector, $\mathbf{r}(t)$, for any $t \geq 0$.
10. Let $\mathbf{r}(t)=t \mathbf{i}+t \mathbf{j}+\frac{t^{2}}{2} \mathbf{k}$. Find the unit tangent vector, $\mathbf{T}(0)$, the unit normal vector, $\mathbf{N}(0)$, and the unit binormal vector $\mathbf{B}(0)$ at $t=0$.
11. Evaluate the limit

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{y^{4}+2 x^{3} y}{\left(x^{2}+y^{2}\right)^{2}}
$$

or show it does not exist.
12. A triangular sheet of glass is expanding. When the base is 2 in and the height is 4 in, the base is increasing at the rate of $0.25 \mathrm{in} / \mathrm{hr}$ and the height at $0.5 \mathrm{in} / \mathrm{hr}$. At what rate is the area of the triangle increasing?

