Answer Key 3

MATH 225: Calculus III
Exam I Spring 2004

Name: \qquad
Instructor: \qquad

1) There are 10 multiple choice questions worth 6 points each and 3 partial credits problems worth 10 points each. You start with 10 points.
(2) On the partial credit problems you must show your work and all important steps to receive credit.
(3) Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this page.

You may use a calculator if you wish.

1. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \square$
2. $\mathrm{a} \quad \mathrm{b} \quad \mathrm{c} \quad \mathrm{d} \quad \bullet$
3.

7. \bullet b c d

3. $\mathrm{a} \boxed{\mathrm{b}} \quad \mathrm{c} \quad \mathrm{d} \quad \bullet$
8.

4. a b \bullet d e

5. \bullet b $\quad \mathrm{c}$ d
10. a b c • e

MATH 225: Calculus III
Exam I Spring 2004

Name: \qquad
Instructor: \qquad

1) There are 10 multiple choice questions worth 6 points each and 3 partial credits problems worth 10 points each. You start with 10 points.
(2) On the partial credit problems you must show your work and all important steps to receive credit.
(3) Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this page.

You may use a calculator if you wish.

1. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$
2. a b $\mathrm{b} \sqrt{\mathrm{d}}, \mathrm{e}$
3.

7. a b b c $\mathrm{d} \quad \mathrm{e}$
3. a b $\mathrm{b} \sqrt{\mathrm{c}} \mathrm{d} \quad \mathrm{e}$
8. a b $\mathrm{c} \sqrt{\mathrm{d}} \mathrm{e}$
4. a b b c $\mathrm{d} \quad \mathrm{e}$
5. a b c c d e
9. a b b c $\mathrm{d} \quad \mathrm{e}$
10. a b b d e
number right times $6=$ \qquad
11.
12.
13.

You start with: 10 points

Total Score \qquad

1. Determine the projection of $\mathbf{a}=\langle 3,2,1\rangle$ onto $\mathbf{b}=\langle 2,2,1\rangle$.
(a) $\frac{1}{9}\langle 3,2,1\rangle$
(b) $\frac{11}{9}\langle 3,2,1\rangle$
(c) $\langle 2,2,1\rangle$
(d) $11\langle 2,2,1\rangle$
(e) $\frac{11}{9}\langle 2,2,1\rangle$
2. Find the distance between the origin and the plane given by the equation $x+y+z=-1$.
(a) $\sqrt{3}$
(b) 1
(c) $\frac{1}{\sqrt{3}}$
(d) $\frac{2}{\sqrt{3}}$
(e) 0
3. Determine the speed at $t=1$ of an object whose position function is $\mathbf{r}(t)=\left\langle 2 t^{3}, 3 t, 3 t^{2}\right\rangle$.
(a) 18
(b) 0
(c) 14
(d) 8
(e) 9
4. Determine the cosine of the angle between $P_{0} P_{1}$ and $P_{0} P_{2}$ at P_{0} where $P_{0}=(-1,2,1)$, $P_{1}=(-3,1,-5)$ and $P_{2}=(-4,3,-4)$.
(a) 0
(b) $\frac{\sqrt{2}}{2}$
(c) $\frac{35}{\sqrt{41} \sqrt{35}}$
(d) $\frac{35}{\sqrt{41}}$
(e) $\frac{1}{2}$
5. A particle moves with position function $\mathbf{r}(t)=\langle 4 \sin t, 4 \cos t, 3 t\rangle$. Find the tangential and normal components of acceleration.
(a) $a_{T}=0, a_{N}=4$
(b) $a_{T}=4, a_{N}=3$
(c) $a_{T}=0, a_{N}=0$
(d) $a_{T}=4, a_{N}=0$
(e) $a_{T}=\frac{4}{5}, a_{N}=\frac{4}{5}$
6. Which of the following points are on the line through the points $(-1,1,0)$ and $(-1,5,7)$?
(a) $(-1,-4,-7)$
(b) $(-1,7,7)$
(c) $(-1,11,14)$
(d) $(-1,6,7)$
(e) $(-1,9,14)$
7. Evaluate the integral $\int\left(\mathbf{i}+2 t \mathbf{j}+3 t^{2} \mathbf{k}\right) d t$
(a) $t \mathbf{i}+t^{2} \mathbf{j}+t^{3} \mathbf{k} t+\mathbf{c}$
(b) $t+t^{2}+t^{3}+C$
(c) $\mathbf{i}+t^{2} \mathbf{j}+t^{3} \mathbf{k}$
(d) $t \mathbf{i}+t^{2} \mathbf{j}+t^{3} \mathbf{k}$
(e) $2 \mathbf{j}+6 t \mathbf{k}+\mathbf{c}$
8. Find the length of the curve $\mathbf{r}(t)=\left\langle t^{2}, \frac{4}{3} t^{\frac{3}{2}}, t\right\rangle$ for $0 \leq t \leq 1$.
(a) 4
(b) 1
(c) $\frac{3}{2}$
(d) $\frac{4}{3}$
(e) 2
9. Find the domain D of the function $f(x, y)=\sqrt{1-x^{2}-y^{2}}$.
(a) a unit disk
(b) $\{(x, y) \mid x \leq 1, y \leq 1\}$
(c) a unit square
(d) $\{(x, y) \mid-1 \leq x \leq 1,-1 \leq y \leq 1\}$
(e) all (x, y) on the plane
10. A point moves in space in such a way that at time t its position is given by the vectorvalued function $\mathbf{r}(t)=\left\langle t^{2}+1,2 t^{2}-1,2-3 t^{2}\right\rangle$. At what time does the point hit the plane $2 x+2 y+3 z=9$?
(a) ± 2
(b) $\pm \frac{1}{2}$
(c) 0
(d) does not hit
(e) 9
11. Let ℓ be the intersection of the two planes. Find an equation for ℓ in the form of $\mathbf{r}(t)=$ $\mathbf{r}_{0}(t)+t \mathbf{v}$, where two planes are given by equations $x-y=1$ and $x-z=1$.
12. Find the unit tangent, the unit normal and binormal vectors for the circular helix $\mathbf{r}(t)=$ $\langle\cos 3 t, \sin 3 t, 4 t\rangle$.
13. The initial position and velocity of an object moving with acceleratio $\mathbf{a}=\left\langle e^{t}, 0,0\right\rangle$ are $\mathbf{r}(0)=\langle 2,3,2\rangle$ and $\mathbf{v}(0)=\langle 1,1,1\rangle$. Find its position at time t.
