Solutions to Math. 226, Exam 2

1a. The characteristic equation is $4 r^{2}-8 r+3=0$ and has roots $r=12 o r 32$. Therefore the general solution to the DE is given by $y=c_{1} e^{12 x}+c_{2} e^{32 x}$.

1b. The characteristic equation is $r^{2}+6 r+25=0$ and has roots $r=-3 \pm 4 i$. Therefore, the general solution of the D.E. is given by $y=e^{-3 x}\left[c_{1} \cos 4 x+c_{2} \sin 4 x\right]$.
2. Another solution to the DE is given by $y=e^{x} v, v$ to be determined. We must have

$$
x\left(e^{x} v\right)^{\prime \prime}-(2 x+1)\left(e^{x} v\right)^{\prime}+(x+1) e^{x} v=0
$$

or

$$
x\left(e^{x} v^{\prime \prime}+2 e^{x} v^{\prime}+e^{x} v\right)-(2 x+1)\left(e^{x} v^{\prime}+e^{x} v\right)+(x+1) e^{x} v=0
$$

or

$$
x e^{x} v^{\prime \prime}-e^{x} v^{\prime}=0 o r v^{\prime \prime}-1 x v^{\prime}=0 .
$$

If we let $u=v^{\prime}$ then we obtain the equation $u^{\prime}-1 x u=0$ or $d u u=d x x$ or $\ln u=\ln x$ or $u=x$ or $v^{\prime}=x$ or $v=12 x^{2}$. Therefore $y_{2}=12 x^{2} e^{x}$ is a second solution which is independent from $y_{1}=e^{x}$. Thus the general solution to the above D.E. is given by $y=e^{x}\left[c_{1}+c_{2} x^{2}\right]$.
3. The general solution to the DE is given by

$$
y=c_{1} x+c_{2} 1 x+y_{p}
$$

where $y_{p}=y_{1} u_{1}+y_{2} u_{2}$ and u_{1} and u_{2} satisfy the system

$$
\left\{y_{1} u_{1}^{\prime}+y_{2} u_{2}^{\prime}=0\right.
$$

or

$$
a_{n+2}=(n+2) a_{n}(n+2)(n+1) \text { or } a_{n+2}=2 n+1 a_{n}, n=0,1,2 \ldots
$$

5b. Since $y(0)=0$ we have $a_{0}=0$ and since $y^{\prime}(0)=1$ we have $a_{1}=1$. By the recurrence relation we see that $a_{2 n}=0$ and $a_{2 n+1}=1 n!$.

5c. The solution is $y=\sum_{n=0}^{\infty} 1 n!x^{2 n+1}$. Since $1(n+1)!|x|^{2(n+1)+1} 1 n!|x|^{2 n+1}=x^{2} n+1 \longrightarrow \square$ 0 asn $\rightarrow \infty$, for all $x \in R$ we have that the power series converges for all $x \in R$, i.e. its radius of convergence is $R=\infty$.

