Solutions to Math. 226, Exam 2

1a. The characteristic equation is $4r^2 - 8r + 3 = 0$ and has roots r = 12or32. Therefore the general solution to the DE is given by $y = c_1 e^{12x} + c_2 e^{32x}$.

1b. The characteristic equation is $r^2 + 6r + 25 = 0$ and has roots $r = -3 \pm 4i$. Therefore, the general solution of the D.E. is given by $y = e^{-3x} [c_1 \cos 4x + c_2 \sin 4x]$.

2. Another solution to the DE is given by $y = e^x v$, v to be determined. We must have

$$x(e^{x}v)'' - (2x+1)(e^{x}v)' + (x+1)e^{x}v = 0$$

or

$$x(e^{x}v'' + 2e^{x}v' + e^{x}v) - (2x+1)(e^{x}v' + e^{x}v) + (x+1)e^{x}v = 0$$

or

$$xe^{x}v'' - e^{x}v' = 0orv'' - 1xv' = 0.$$

If we let u = v' then we obtain the equation u' - 1xu = 0 or duu = dxx or $\ln u = \ln x$ or u = x or v' = x or $v = 12x^2$. Therefore $y_2 = 12x^2e^x$ is a second solution which is independent from $y_1 = e^x$. Thus the general solution to the above D.E. is given by $y = e^x[c_1 + c_2x^2]$.

3. The general solution to the DE is given by

$$y = c_1 x + c_2 1 x + y_p,$$

where $y_p = y_1 u_1 + y_2 u_2$ and u_1 and u_2 satisfy the system

$$\{y_1 u_1' + y_2 u_2' = 0$$

or

$$a_{n+2} = (n+2)a_n(n+2)(n+1)$$
 or $a_{n+2} = 2n+1a_n, n = 0, 1, 2...$

5b. Since y(0) = 0 we have $a_0 = 0$ and since y'(0) = 1 we have $a_1 = 1$. By the recurrence relation we see that $a_{2n} = 0$ and $a_{2n+1} = 1n!$.

5c. The solution is $y = \sum_{n=0}^{\infty} 1n! x^{2n+1}$. Since $1(n+1)! |x|^{2(n+1)+1} 1n! |x|^{2n+1} = x^2n+1 \longrightarrow 0$ $0asn \to \infty$, for all $x \in R$ we have that the power series converges for all $x \in R$, i.e. its radius of convergence is $R = \infty$.