amsppt

Mathematics 226

Solutions to Test 2

1a) We have:

$$
r^{2}+4 r+29=0 \Longrightarrow r=-4 \pm \sqrt{16-116} 2 \Longrightarrow r=-2 \pm 5 i
$$

Thus the general solution of the DE is: $y=e^{-2 x}\left[c_{1} \cos 5 x+c_{2} \sin 5 x\right]$
1b) We have:

$$
r^{2}+12 r+64=0 \Longrightarrow(r+6)^{2}=0 \Longrightarrow r=-6
$$

Thus the general solution of the DE is: $y=c_{1} e^{-6 x}+c_{2} x e^{-6 x}$

2a) We have $r^{2}-9=0 \Longrightarrow r= \pm 3$. The solution to $y^{\prime \prime}-9 y=0$ is $y_{c}=c_{1} e^{3 x}+c_{2} e^{-3 x}$. A particular solution is of the form: $y_{p}=A x^{2}+B x+C$. If we substitute y_{p} into the DE we obtain: $2 A-9\left(A x^{2}+B x+C\right)=18 x^{2}+5$ Therefore we have

$$
-9 A=18,-9 B=0 \text { and } 2 A-9 C=5
$$

By solving these equations we obtain: $A=-2, B=0$ and $C=-1$. Thus the general solution is: $y=c_{1} e^{-3 x}+c_{2} e^{-3 x}-2 x^{2}-1$

2b) We have: $1=y(0)=c_{1}+c_{2}-1 \Longrightarrow c_{1}+c_{2}=2$. Since
$y^{\prime}(x)=3 c_{1} e^{3 x}-3 c_{2} e^{-3 x}-4 x$ we have $0=y^{\prime}(0)=3 c_{1}-3 c_{2} \Longrightarrow c_{1}-c_{2}=0$.
Therefore $c_{1}=c_{2}=1$ and the solution is: $y=e^{3 x}+e^{-3 x}-2 x^{2}-1$
3) A particular solution is of the form

$$
y_{p}=y_{1} u_{1}+y_{2} u_{2}, y_{1}=e^{x}, y_{2}=x e^{x}, \text { where }
$$

$\left\{y_{1} u_{1}^{\prime}+y_{2} u_{2}^{\prime}=0\right.$
Thus $u_{1}^{\prime}=0 x$
1 x
$=-1$ and $\mathrm{u}^{\prime}{ }_{2}=10$
Thus $y_{p}=-x e^{x}+x e^{x} \ln x$ and the general solution is: $y=c_{1} e^{x}+c_{2} x e^{x}+x e^{x} \ln x$
4) We have $m u^{\prime \prime}+k u=0$. Therefore $u^{\prime \prime}+k m u=0$. Since $k \Delta l=W$ we have $u^{\prime \prime}+$ $W m . \Delta l u=0$. Therefore $u^{\prime \prime}+g \Delta l u=0$. since $g=32$ and $\Delta l=12$ we have $u^{\prime \prime}+64 u=0$. Since $r^{2}+64=0$ implies $r= \pm i 8$ we have $u=c_{1} \cos 8 t+c_{2} \sin 8 t$. Since $0=u(0)=c_{1}$ we have $u^{\prime}=8 c_{2} \sin 8 t$. Thus $u^{\prime}(0)=16=8 c_{2}$ and $c_{2}=2$. Therefore: $u(t)=2 \sin 8 t$. The period is $T=2 \pi 8=\pi 4$. Thus the time for 4 cycles is: $\pi \mathrm{sec}$

5a) We have $y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}$ and $y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}$. Thus we must have:

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+(x-1) \sum_{n=1}^{\infty} n a_{n} x^{n-1}+\sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

or

$$
\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}+\sum_{n=0}^{\infty} n a_{n} x^{n}-\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}+\sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

or

$$
\sum_{n=0}^{\infty}\left[(n+2)(n+1) a_{n+2}+n a_{n}-(n+1) a_{n+1}+a_{n}\right] x^{n}=0
$$

or

$$
\left.(n+2)(n+1) a^{n+2}+n a_{n}-(n+1) a_{n+1}+a_{n}\right]=0
$$

or

$$
(n+2)(n+1) a_{n+2}-(n+1) a_{n+1}+(n+1) a_{n}=0
$$

or

$$
a_{n+2}=a_{n+1}-a_{n} n+2
$$

5b) We have $a_{2}=12\left(a_{1}-a_{0}\right)$ and $a_{3}=13\left(a_{2}-a_{1}\right)=13\left(12 a_{1}-12 a_{0}-a_{1}\right)$ or

$$
a_{3}=-16\left(a_{0}+a_{1}\right)
$$

