amsppt

1. Find the solution of the following initial value problem:

$$
y^{\prime}+\cos x y=\cos x, \quad y(0)=2
$$

Solution The integrating factor is $\mu(x)=e^{\int \cos x d x}=e^{\sin x}$ After multiplying by $e^{\sin x}$ the eqn becomes $\left.e^{\sin x} y\right)^{1}=\cos x e^{\sin x}$ Thus $e^{\sin x}=\int \cos x e^{\sin x} d x+c=\int e^{\sin x} d(\sin x)+c=$ $e^{\sin x}+c$ and $y(x)=1+c e^{-\sin x}$ since $2=y(0)=1+c e^{\circ}=1+c$ We have $c=1$ and $y(x)=1+e^{-\sin x}$
2. A certain population increases at a rate proportional to the square root of the population present. At the beginning the population was 100. One hour later it is 900 .

F ind the population $p(t)$ at any time.
F ind the population four hours later;i.e. find $p(4)$.

Solution

$$
\begin{gathered}
d p d t=r \sqrt{p} \\
\Rightarrow p^{-12} d p=r d t \Rightarrow p^{-1 / 2+1}-1 / 2+1=r t+c \Rightarrow \sqrt{p}=12(r t+c) \\
10=\sqrt{100}=\sqrt{p(0)}=12(r(o)+c) \Rightarrow c=20 \\
30=\sqrt{900}=\sqrt{p(1)}=12(r(1)+20) \Rightarrow r=40 \Rightarrow P(t)=100(2 t+1)^{2} \\
P(4)=100(2(4)+1)^{2}=100(81) \\
P(t)=100(2 t+1)^{2} \\
P(4)=8,100
\end{gathered}
$$

3. A body with weigt 160 pounds falls from rest in a medium offering resistance equal to $10 v^{2}$. Find the speed $v(t)$ of the body at any time t. Also find $\lim _{t \rightarrow \infty} v(t)$.

Solution $m d u d t=m g-10 u^{2}, m=w g=16032=5 d u d t=32-2 u^{2} d u 16-v^{2}=2 d t \Rightarrow$ $\int d u 16-v^{2}=2 t+c 18 \int[14-u+14+u] d u=2 t+c 18 e n(4+u)-18 e n(4-u)=2 t+c$

$$
\begin{aligned}
& e n 4+u 4-u=16 t+c \text { At } t=0: \ln 4+04-0=c \text { or } \ln 1=c=0 \text { Thus } 4+u 4-u=e^{16 t} \\
& u(t)=41-e^{-16 t} 1-e^{-16 t}
\end{aligned}
$$

4. Find the general solution of the D.E.

$$
y^{\prime \prime}-6 y^{\prime}+9 y=e^{3 x}+\sin x
$$

Solution First we solve the homogeneous equation

$$
y^{\prime \prime}-6 y^{\prime}+9 y=0
$$

To solve this we need to solve the quadratic $r^{2}-6 r+9=0$. We find $r=3$ and the solutions to the homogeneous equation are

$$
y_{c}=c_{1} e^{3 x}+c_{2} x e^{3 x}
$$

A particular solution of the non-honogeneous equation is given by

$$
y_{p}=A x^{2} e^{3 x}+B \sin X+C \cos X
$$

From the D.E. we obtain
$A\left[2 e^{3 x}+x e^{3 x}+9 x^{2} e^{3 x}\right]-6 A\left[2 x e^{3 x}+3 x^{2} e^{3 x}\right]+9 A x^{2} e^{3 x}+[-B \sin X-C \cos X]-6[B \cos X-C \sin X]+9[B \sin X$

We must have $2 A=1,8 B+6 C=1$, and $8 C-6 B=0$
or $A=12, B=225, C=350$. Therefore,

$$
y=y_{c}+y_{p}=e^{3 x}\left(c_{1}+c_{2} x+12 x^{2}\right)+225 \sin X+350 \operatorname{Cos} X
$$

5. Solve the differential equation

$$
y^{\prime \prime}-2 y^{\prime}+y=2 e^{x} \ln x, \quad x>0
$$

Solution The solution of the D.E. is given by $y=y_{c}+y_{p}$ where y_{c} is the solution to $y^{\prime \prime}-2 y^{\prime}+y=0$ and y_{p} is a particular solution. We have $r^{2}-2 r+1=(r-1)^{2}=0$ or $r=1$. Thus,

$$
y_{c}=c_{1} e^{x}+c_{2} x e^{x} .
$$

y_{p} is given by $y_{p}=e^{x} u_{1}+x e^{x} u_{2}$ where

$$
\begin{gathered}
e^{x} u_{1}^{\prime}+x e^{x} u_{2}^{\prime}=0 \\
e^{x} u_{1}^{\prime}+(x+1) e^{x} u_{2}^{\prime}=2 e^{x} \ln x
\end{gathered}
$$

we have

$$
u_{1}^{\prime}=0 x e^{x}
$$

$\mathrm{e}^{x} x e^{x}$
$=-2 \mathrm{xe}^{2 x} \ln x e^{2} x=-2 x \ln x$
or,

$$
u_{1}=-\int 2 x \ln x d x=-\int \ln x d\left(x^{2}\right)=-x^{2} \ln x+\int x^{2} 1 x d x
$$

or

$$
\begin{gathered}
u_{1}=-x^{2} \ln x+x^{2} 2 \\
u_{2}^{\prime}=e^{x} 0
\end{gathered}
$$

$\mathrm{e}^{x} x e^{x}$
$=2 \mathrm{e}^{2 x} \ln x \mathrm{e}^{2 x}=2 \ln x$
or

$$
u_{2}=2 \in \ln x d x=2 x \ln x-2 \in 1 x x d x=2 x \ln x-2 x .
$$

Therefore,

$$
y_{p}=e^{x}\left(-x^{2} \ln x+x^{2} 2\right)+x e^{a} x(2 x \ln x-2 x)
$$

and

$$
y=e^{x}\left[c_{1}+c_{2} x-x^{2} \ln x+x^{2} 2+2 x^{2} \ln x-2 x^{2}\right]
$$

or

$$
y=e^{x}\left[c_{1}+c_{2} x+x^{2} \ln x-32 x^{2}\right]
$$

6. Find the general solution to the D.E.

$$
y^{\prime \prime}-4 y^{\prime}+4 y=2 e^{2 x}
$$

Solution The general solution of the D.E. is given by $y=y_{c}+y_{p}$ where y_{c} is the general solution of the homogeneous equation and y_{p} is a particular solution. Since $r^{2}-4 r-5=0$ implies $r=2$ is a double root, we have

$$
y_{c}=c e^{2 x}+c_{2} x e^{2} x
$$

y_{p} is of the form $y_{p}=A x^{2} e^{2 x}$. From the D.E. we obtain

$$
\left(2 e^{2 x}+8 x e^{2 x}+4 x^{2} e^{2 x}\right)-4\left(2 x e^{2 x}+2 x^{2} e^{2 x)+4 x^{2} e^{2 x}=2 e^{2 x}}\right.
$$

Therefore, $A=1$ and

$$
y=\left(x^{2}+c_{2} x+c_{1}\right) e^{2 x}
$$

b) Show that any solution to the D.E. is positive for all \mathbf{x} with $|x|$ large enough.

Solution By part (a), a solution to the D.E. is given by

$$
y(x)=\left(x^{2}+b x+c\right) e^{2 x}, b, c \in R .
$$

Since $e^{2 x}>0$ for all x and since for $x \neq 0$ we have

$$
x^{2}+b x+c=x^{2}\left(1+b x+c x^{2}\right) \geq x^{2}\left(1-|b||x|-|c| x^{2}\right) \geq x^{2}\left(1-M|x|-M^{2} x^{2}\right)
$$

where $M=\max \{|b|,|c|, 1\}$.
Thus, if $M|x|<12$ or $2 M<|x|$, then $x^{2}+b x+c>x^{2}(1-12-14)=14 x^{2}>0$.

Thus, if $|x|>2 M$ then $y(x)>0$.
7. Example (Variationof Parameters)1991FindthegeneralsolutiontotheD.E.y ${ }^{\prime \prime}+y=$ $1 \cos ^{3} x,-n 2<x<n 2$

Solution ThegeneralsolutiontoD.E.isgivenbyy $=y_{c}+y_{p}$ where y_{c} is the general solution to the homogeneous solution, i.e., $y_{c}=c_{1} \operatorname{Sin} x+c_{2} \operatorname{Cos} x$, and y_{p} is a particular solution to D.E., this solution is of the form

$$
y_{p}=u_{1} \operatorname{Sin} x+u_{2} \operatorname{Cos} x
$$

where u_{1}^{\prime} and u_{2}^{\prime} satisfy the system

$$
\begin{gathered}
\operatorname{Sin} x u_{1}^{\prime}+\operatorname{Cox} x u_{2}^{\prime}=0 \\
\operatorname{Cos} x u_{1}^{\prime}-\operatorname{Sin} x u_{2}^{\prime}=1 \cos ^{3} x
\end{gathered}
$$

Thus

$$
u_{1}^{\prime}=0 \cos x
$$

$\sin \mathrm{x} \cos \mathrm{x}$
$=1 \cos ^{2} x$
and

$$
u_{2}=\sin x 0
$$

$\sin \mathrm{x} \cos \mathrm{x}$
$=-\sin x \cos ^{3} x$
Thus

$$
u_{1}=\int d x \cos ^{2} x=\tan x
$$

and

$$
u_{2}=-\int \sin x \cos ^{3} x d x=\int d(\cos x) \cos ^{3} x=(\cos x)^{-3+1}-3+1=-12 \cos ^{2} x
$$

The general solution to D.E. is

$$
y=c_{1} \sin x+c_{2} \cos x+\tan x \sin x-12 \cos ^{2} x \cos x
$$

8.

Solution. Example (similar). Find the general solution to D.E.

$$
y^{\prime \prime}+4 y=1 \sin ^{3} 2 x,-n<x<0
$$

9. Find the solution of the following initial value problem:

$$
y^{\prime}+4 x^{3} y=x^{3}, \quad y(0)=1
$$

Solution. Integratingfactor $\mu(x)=e^{\int 4 x^{3} d x}=e^{x^{4}}$ Thus,$\left(e^{x^{4}} y\right)^{\prime}=x^{3} e^{x^{4}}$

$$
\begin{gathered}
\Rightarrow e^{x^{4}}=\int x^{3} e^{x^{4}}+c \\
\Rightarrow e^{x^{4}} y=14 e^{x^{4}}+c \\
\Rightarrow y(x)=14+c e^{-x^{4}} \\
1=y(0)=14+c \Rightarrow c=34
\end{gathered}
$$

Therefore,

$$
y(x)=14+34 e^{-x^{4}}
$$

10. A certain population increases at a rate proportional to the cubic root of the population present. In the $t=0$ the population is 1000 . At $t=3$ later it is 27,000 . First find a formula that gives the population $\mathrm{p}(\mathrm{t})$ at any time and then compute the population at $t=45 / 8$.

Solution.

$$
d P d t=r p^{1} 3 \Rightarrow p^{-13} d P=r d t \Rightarrow p^{-} 13+1-13+1=r t+c
$$

$$
\begin{gathered}
p^{2} 3=23(r t+c) \cdot 1000^{2} 3=23 c \Rightarrow 100=23 c \\
\Rightarrow c=150 \Rightarrow P^{2} 3=23(r t+150) \\
27,000^{2} 3=23 r \cdot 3+100 \Rightarrow 900=2 r+100 \Rightarrow r=400 \\
\Rightarrow P^{2} 3=23(400 t+150) \\
P(45 / 8)=23(400 \cdot 458+150)=1,600 \\
P(t)=[23(400 t+150)]^{3} 2 \\
P(458)=1600^{3} 2=40^{3}=64,000
\end{gathered}
$$

11.

A man with a parachute jumps from a great hight. The combined weigt of man and parachute is 160 pounds and the force of the air resistance is equal to $12 v$ when the parachute is closed. After 10 seconds he opens his parachute. Find his speed $v(t)$ at any time before he opens his parachute and at the time he opens his parachute. It is given that $1-e^{-1} 0.632$.

Solution.

$$
\begin{aligned}
& m d v d t=m g-12 v \\
& \Rightarrow d v d t+12 m v=g
\end{aligned}
$$

$$
\begin{gathered}
m=w g=16032=5 \\
d v d t+0.1 v=32 \\
\Rightarrow\left(v e^{0.1 t}\right)^{1}=32 e^{0.1 t} \\
\Rightarrow v e^{0.1 t}=320.1 e^{0.1 t}+c \\
\Rightarrow V(t)=320+c e^{-0.1 t}, 0=v(0)=320+c \\
V(t)=320\left(1-e^{-0.1 t}\right) \\
V(10)=(320) x(0.632)=202.24 \text { ft./sec. } \\
m \bullet t=0
\end{gathered}
$$

12. Find the general solution of the D.E.

$$
y^{\prime \prime}-10 y^{\prime}+25 y=0
$$

Then find the solution with $y(0)=1$ and $y^{\prime}(0)=9$.

Solution.

$$
r^{2}-10 r+25=(r-s)^{2}=0 \Rightarrow r=5
$$

$$
\begin{gathered}
y=c_{1} e^{5 x}+c_{2} x e^{5 x} \\
1=y(0)=c_{1} \\
y^{\prime}=5 c_{1} e^{5 x}+c_{2}\left(5 x e^{5 x}+e^{5 x}\right) \\
y=y(0)=5 c_{1}+c_{2} \Rightarrow c_{2}=4
\end{gathered}
$$

So,

$$
\begin{gathered}
y=c_{1} e^{5 x}+c_{2} x e^{5 x} \\
y=e^{5 x}+4 x e^{5 x}
\end{gathered}
$$

13. Find a particular solution to the D.E:

$$
y^{\prime \prime}+y=1 \cos x
$$

Then find the general solution to the above D.E.

Solution We have that $y_{1}=\cos x$ and $y_{2}=\sin x$ are solutions to $y^{\prime \prime}+y=0$. Then, $y_{p}=y_{1} u_{1}+y_{2} u_{2}$ where

$$
\begin{gathered}
\left\{y_{1} u_{1}^{\prime}+y_{2} u_{2}^{\prime}=0\right. \\
u_{1}^{\prime}=\mid 0 \sin x
\end{gathered}
$$

$\mid \cos x \sin x$
$=-\sin \mathrm{x} \cos \mathrm{x} \Rightarrow u_{1}=-\int \sin x \cos x d x=\ln |\cos x|$

$$
u_{2}^{\prime}=\mid \cos x 0
$$

So,

$$
\begin{aligned}
& y_{p}=\cos \ln |\cos x|+x \sin x \\
& y=c_{1} \cos x+c_{2} \sin x+y_{p}
\end{aligned}
$$

13. Find a particular solution to the D.E:

$$
y^{\prime \prime}+y=1 \cos x
$$

Then find the general solution to the above D.E.

Solution We have that $y_{1}=\cos x$ and $y_{2}=\sin x$ are solutions to $y^{\prime \prime}+y=0$. Then, $y_{p}=y_{1} u_{1}+y_{2} u_{2}$ where

$$
\begin{gathered}
\left\{y_{1} u_{1}^{\prime}+y_{2} u_{2}^{\prime}=0\right. \\
u_{1}^{\prime}=0 \sin x
\end{gathered}
$$

$\cos \mathrm{x} \sin \mathrm{x}$
$=-\sin \mathrm{x} \cos \mathrm{x} \Rightarrow u_{1}=-\int \sin x \cos x d x=\ln |\cos x|$

$$
u_{2}^{\prime}=\cos x 0
$$

14. Find the general solution to the differential equation

$$
x y^{\prime \prime}-(2 x+1) y^{\prime}+(x+1) y=0
$$

given that $y_{1}(x)=e^{x}$ is a solution.

Solution. We look for a second independent solution y_{2} in the form

$$
y_{2}=y_{1}(x) u(x)=e^{x} u(x)
$$

We must have

$$
x\left(e^{x} u\right)^{\prime \prime}-(2 x+1)\left(e^{x} u\right)^{\prime}+(x+1) e^{x} u=0
$$

or

$$
x\left(e^{x} u^{\prime \prime}+2 e^{x} u^{\prime}+e^{x} u\right)-(2 x+1)\left(e^{x} u^{\prime}+e^{x} u\right)+(x+1) e^{x} u=0
$$

or

$$
x u^{\prime \prime}-u^{\prime}=0
$$

Let $u=u^{\prime}$. Then $x u^{\prime}=u$ or $d u u=d x x$ or $\ln u=\ln x$ or $u=x$ or $u^{\prime}=x$ or $u^{\prime}=12 x^{2}$. Thus, $y_{2}(x)=12 x^{2} e^{x}$ and the general solution is given by

$$
y(x)=e^{x}\left(c_{1}+c_{2} x^{2}\right)
$$

15. (Variationofparameters).Findthegeneralsolutiontothedifferentialequations :

$$
\begin{gathered}
\text { i. } y^{\prime \prime}-y=1 e^{x}+1 \\
\text { ii. } y^{\prime \prime}-2 y^{\prime}+y=e^{x} \ln x x^{2} \\
\text { iii. } x y^{\prime \prime}-(2 x+1) y^{\prime}+(x+1) y=g(x)
\end{gathered}
$$

given that $y_{1}=e^{x}$ and $y_{2}=x^{2} 2 e^{x}$ are two independent solutions.

