Math 226: Calculus IV
Exam I February 14, 1991

Name:
Score:

Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this answer sheet. There are 16 multiple choice questions worth 6 points each. You start with 4 points.

Let

$$
=201-631 \quad=-115
$$

Find -2 . Not defined $40-1-6-71221-83-94-1-72-89$
Calculate the matrix product

$$
-1023112-10-140
$$

$6110-4-200-16101-10-200-1120$ Not defined
Which of the following matrices are in row-echelon form?

$$
\begin{gathered}
=1-21000000001 \quad=00121-310 \quad=010-1001200010000 \\
=0102 \quad=100000000
\end{gathered}
$$

and only only, , and only ,, , and only, ,, and
Translate the following system of equations into an augmented matrix.

$$
\begin{aligned}
x_{1}-x_{2}+x_{4} & =5 \\
2 x_{2}+x_{3} & =-3 \\
x_{1}-x_{3}+2 x_{4} & =1 \\
x_{2}-x_{4} & =0
\end{aligned}
$$

$1-101: 50210:-310-12: 1010-1: 01-11: 5210:-31-12: 11-10: 01-110211-1201-11-101021010-12010$ $1-110: 50210:-31-120: 101-11: 0$

Which of the following is the general solution of the system of equations associated to the augmented matrix

$$
11-104: 000153: 10001-2: 2
$$

Sys-

$$
\begin{array}{llll}
x_{1}=-9-x_{2}-17 x_{5} & x_{1}=-x_{2}-4 x_{5} & x_{1}=0 & x_{1}=-x_{2}+x_{3}-4 x_{5} \\
x_{3}=-9-13 x_{5} & x_{3}=1-3 x_{5} & x_{3}=1 & x_{3}=1-5 x_{4}+3 x_{5} \\
x_{4}=2+2 x_{5} & x_{4}=2+2 x_{5} & x_{4}=2 & x_{4}=2-2 x_{5}
\end{array}
$$

tem is inconsistent
Transform the following matrix into row-echelon form without exchanging any rows.

$$
12032516120437110
$$

12030110000100001203011000110001120300110001000012030101000100001000010000100000
Find the inverse of the following matrix, if it exists.
123012101
$\frac{1}{2} 1-212-2-2-121 \frac{1}{2} 11-30-201011-2301-2001 \frac{1}{2}-31111-20-11$ Does not exist
Calculate the determinant of the matrix

$$
1-11-21-21-31
$$

$0612-6-12$

Use expansion by cofactors to calculate the determinant of the matrix

$$
2-13061-1503004002
$$

$-6030-151200$
Calculate the $(2,3)$-cofactor, $A_{(2,3)}$, of the matrix

$$
=5712621420
$$

$-13-81640$
Which of the following statements are always true:
(A) If $1_{1}, 2,3,4$ are linearly dependent, then there are no scalars c_{1}, c_{2}, c_{3}, and c_{4}, not all zero, such that $c_{11}+c_{22}+c_{33}+c_{44}=0$.
(B) If $1_{2},{ }_{3}$, and 4 are linearly independent, then ${ }_{1}$ is not a linear combination of ${ }_{2}, 3$, and ${ }_{4}$.
(C) If 1_{2}, and ${ }_{3}$ are 2-dimensional vectors, then they are linearly dependent.
(D) If 1_{2}, and ${ }_{3}$ are linearly independent, then ${ }_{1},{ }_{2},{ }_{3}$, and 4_{4} are linearly independent.

B and C only A, C, and D only B, C, and D only A , and D only $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D
Find all solutions to the equation $=$ where

$$
=1-1-1-11-1-1-11, \quad=x_{1} x_{2} x_{3}, \quad=-242
$$

$=-30-1=-20-1=-242=-31-2$ No solution exists
Determine a maximal subset of linearly independent vectors from the vectors

$$
{ }_{1}=[0,1,0,0] \quad{ }_{2}=[1,1,1,1] \quad{ }_{3}=[0,1,1,1] \quad{ }_{4}=[1,1,0,0]
$$

$1,2,311,23,41,2,3,4$
Use the Gram-Schmidt process to produce an orthonormal set of vectors from the following vectors: ${ }_{1}=[0,-1,0,1],{ }_{2}=[0,1,1,-1],{ }_{3}=[1,1,-1,0]$.

$$
\begin{array}{llrl}
1 & =\frac{1}{\sqrt{2}}[0,-1,0,1] & 1 & =[0,-1,0,1] \\
2 & =[0,0,1,0] & 2 & =[0,0,1,0] \\
3 & =\sqrt{\frac{2}{3}}\left[1, \frac{1}{2}, 0, \frac{1}{2}\right] & & =[2,1,0,1] \\
3 & &
\end{array}
$$

${ }_{1}=[1,0,0,0]$
$2=[0,1,0,0]$
$3=[0,0,1,0]$

$$
\begin{aligned}
1 & =\frac{1}{\sqrt{2}}[0,-1,0,1] & 1 & =\frac{1}{\sqrt{2}}[0,-1,0,1] \\
2 & =\frac{1}{\sqrt{3}}[0,1,1,-1] & 2 & =\frac{1}{3}[0,2,1,-2] \\
3 & =\frac{1}{\sqrt{3}}[1,1,-1,0] & 3 & =\frac{1}{\sqrt{2}}[1,1,0,0]
\end{aligned}
$$

Find the general solution to the differential equation

$$
x^{2} y^{\prime}+y=e^{\frac{1}{x}}, \quad x>0
$$

$y=c e^{\frac{1}{x}}-\frac{1}{x} e^{\frac{1}{x}} y=-\frac{c}{x^{2}} e^{\frac{1}{x}}-\frac{1}{x} y=c e^{\frac{1}{x}}-\frac{1}{x} y=\frac{c}{x} e^{-\frac{1}{x}}+e^{\frac{1}{x}} y=\frac{c}{x}-e^{-\frac{1}{x}}$
On which of the following intervals does a unique solution exists to the initial value problem

$$
\left(x^{2}-2 x\right) y^{\prime}+x y=\cos (x), \quad y(1)=0
$$

$(0,2)(-\infty, 2)(0, \infty)(-\infty, \infty) A$ unique solution does not exist

