Math 226: Calculus IV
Name:
Exam III April 25, 1991
Score:
1in Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this answer sheet. There are 15 multiple choice questions worth 6 points each. You start with 10 points.

Compute the Wronskian of the functions e^{x} and $x e^{x} \cdot e^{2 x} e^{2 x}+x e^{2 x} e^{x}+x e^{x} e^{2 x}-x e^{2 x} 0$
Determine which of the following pairs of functions are NOT linearly independent. $\frac{x}{1-x}, 1-\frac{1}{1-x}$ $\cos (x), \sin (x) e^{x}, e^{2 x} x^{2}, x-1 \cos (x), \cos (3 x)$

Given that $y_{1}=x^{3}$ is a solution of

$$
x y^{\prime \prime}-y^{\prime}-\frac{3}{x} y=0, \quad x>0
$$

find a second linearly independent solution of the form $y_{2}=v y_{1}$ for some non-constant function $v . y_{2}=\frac{1}{x}$ $y_{2}=\frac{1}{x^{4}} y_{2}=x^{3} e^{-\frac{5}{4} x} y_{2}=e^{-\frac{5}{4} x} y_{2}=x^{3} \ln (x)$

Find the general solution of

$$
4 y^{\prime \prime}+4 y^{\prime}+y=0
$$

$y=e^{-\frac{1}{2} x}\left(c_{1}+c_{2} x\right) y=e^{-\frac{1}{2} x}\left(c_{1}+c_{2} \sqrt{x}\right) y=c_{1} e^{-\frac{1}{2} x}+c_{2} \sqrt{x} y=c_{1} e^{-\frac{1}{2} x}+c_{2} x y=c_{1} e^{-x}+c_{2} e^{-\frac{1}{2} x}$
Solve the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}-3 y=0 \quad y(0)=0, \quad y^{\prime}(0)=1
$$

$y=\frac{1}{4} e^{3 x}-\frac{1}{4} e^{-x} y=-\frac{1}{4} e^{3 x}+\frac{1}{4} e^{x} y=\frac{1}{3} e^{3 x} y=-e^{-x} y=\frac{1}{3} e^{3 x}-e^{x}$
Find the general solution to

$$
2 y^{\prime \prime}+10 y^{\prime}+17 y=0
$$

$y=e^{-\frac{5}{2} x}\left(c_{1} \cos \left(\frac{3}{2} x\right)+c_{2} \sin \left(\frac{3}{2} x\right)\right) y=c_{1} \cos \left(\frac{3}{2} x\right)+c_{2} \sin \left(\frac{3}{2} x\right) y=c_{1} e^{-\frac{5}{2} x}+c_{2} e^{\frac{3}{2} x} y=c_{1} e^{-2 x} \cos (2 x)+$ $c_{2} e^{-2 x} \sin (2 x) y=c_{1} e^{-2 x}+c_{2} x e^{-2 x}$

Determine a suitable form for a particular solution y_{p} of the equation

$$
y^{\prime \prime}+y^{\prime}=x^{2}+x e^{x}
$$

$y_{p}=x\left(A x^{2}+B x+C\right)+(D x+E) e^{x} y_{p}=\left(A x^{2}+B x+C\right)+(D x+E) e^{x} y_{p}=A x^{2}+x(B x+C) e^{x}$ $y_{p}=x^{2}\left(A x^{2}+B x+C\right)+D x e^{x} y_{p}=x\left(A x^{2}+B x+C+D x e^{x}\right)$

Find a particular solution y_{p} to the differential equation

$$
y^{\prime \prime}-3 y^{\prime}=\cos (x)
$$

$y_{p}=-\frac{1}{10} \cos (x)-\frac{3}{10} \sin (x) y_{p}=1+e^{3 x} y_{p}=1+e^{3 x}+\cos (x) y_{p}=-\frac{1}{3} \cos (x)+\frac{2}{3} \sin (x) y_{p}=\frac{1}{15} \cos (x)+$ $\frac{8}{15} \sin (x)$

Let $y(x)=u_{1}(x) \cos (x)+u_{2}(x) \sin (x)$ be a particular solution of

$$
y^{\prime \prime}+y=\tan (x), \quad 0<x<\frac{\pi}{2}
$$

given by the method of variation of parameters. Find u_{2}. $u_{2}=-\cos (x) u_{2}=\sin (x) u_{2}=\sec ^{2}(x) u_{2}=$ $-\sec (x) u_{2}=\cot (x)$

A 3 lb weight stretches a spring 6 inches. The weight is hit from below giving it an upward velocity of 1 $\mathrm{ft} / \mathrm{sec}$. Find the resulting displacement u of the weight from equilibrium. Assume the positive u direction is down and neglect air resistance. $u=-\frac{1}{8} \sin (8 t) u=\frac{1}{8} \cos (8 t) u=-\frac{1}{4 \sqrt{3}} \sin (4 \sqrt{3} t) u=\frac{1}{4 \sqrt{3}} \cos (4 \sqrt{3} t)$ $u=-\cos (8 t)+\sin (8 t)$

Which of the following is the power series for e^{x} centered at $x_{0}=1: e+e(x-1)+\frac{e}{2!}(x-1)^{2}+\frac{e}{3!}(x-1)^{3}+\ldots$ $1+(x-1)+\frac{1}{2!}(x-1)^{2}+\frac{1}{3!}(x-1)^{3}+\ldots 1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\ldots e-e(x-1)+\frac{e}{2!}(x-1)^{2}-\frac{e}{3!}(x-1)^{3}+\ldots$ $1-x+\frac{1}{2!} x^{2}-\frac{1}{3!} x^{3}+\ldots$

Determine the radius of convergence of the series

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{4^{n+1}} x^{2 n}
$$

$241 \frac{1}{4} \infty$
Find the recurrence relation for the coefficients of a power series solution centered at $x_{0}=0$ of the differential equation

$$
(1-x) y^{\prime \prime}+y=0
$$

$a_{n+2}=\frac{n}{n+2} a_{n+1}-\frac{1}{(n+2)(n+1)} a_{n} a_{n+2}=\frac{n}{n+2} a_{n+1}-\frac{1}{n+2} a_{n} a_{n+2}=\frac{n}{(n+2)(n+1)} a_{n} a_{n+2}=\frac{1}{(n+2)(n+1)} a_{n+1}-$ $\frac{1}{(n+2)(n+1)} a_{n} a_{n+2}=\frac{n}{(n+2)(n+1)} a_{n+1}-\frac{1}{n+1} a_{n}$

Determine a lower bound for the radius of convergence of a power series solution centered at $x=2$ of the differential equation

$$
(x+3)^{2} y^{\prime \prime}+x y^{\prime}-y=0
$$

54321

Find a power series solution to the initial value problem

$$
\begin{gathered}
y^{\prime \prime}+x y^{\prime}=0 \quad y(0)=0, \quad y^{\prime}(0)=1 \\
y=x-\frac{1}{6} x^{3}+\frac{1}{40} x^{5}-\frac{1}{336} x^{7}+\ldots y=x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}-\frac{1}{7} x^{7}+\ldots y=x+\frac{1}{6} x^{2}+\frac{1}{20} x^{3}+-\frac{1}{35} x^{4}+\ldots \\
y=x-\frac{1}{4} x^{2}+\frac{1}{75} x^{3}-\frac{1}{116} x^{5}+\ldots y=x-\frac{1}{12} x^{3}+\frac{1}{105} x^{5}-\frac{1}{286} x^{7}+\ldots
\end{gathered}
$$

