Math 226: Calculus IV
Name:
Final Exam May 6, 1991
Score:
Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this answer sheet. There are 25 multiple choice questions worth 6 points each.

Compute the matrix product

$$
0-123410-20610112-2-3344
$$

$420-2-69-90-2-6124-20-8012-300-18-20180-1238-204018-30$ not defined
Solve the following system of linear equations.

$$
\begin{gathered}
x_{1}+2 x_{2}+x_{3}+2 x_{4}+x_{5}=-4 \\
2 x_{1}+x_{2}+2 x_{3}+x_{4}+2 x_{5}=1 \\
3 x_{1}+2 x_{2}+3 x_{3}+2 x_{4}+3 x_{5}=1 \\
4 x_{1}+5 x_{2}+4 x_{3}+5 x_{4}+4 x_{5}= \\
\hline
\end{gathered}
$$

$$
\begin{array}{llll}
x_{1}=2-x_{3}-x_{5} & x_{1}=2 & x_{1}=-4-x_{3} x_{1}=0 \\
x_{2}=-3-x_{4} & x_{2}=-3 & x_{2}=-3-x_{4} & x_{2}=-4 \\
x_{3}, x_{4}, x_{5} \text { free } & x_{3}=x_{4}=x_{5}=0 & x_{5}=0 & x_{3}=x_{4}=1 \\
& x_{3}, x_{4} \text { free } & x_{5}=0
\end{array}
$$

Compute the inverse of the matrix
001111100
The (3,2)-entry of the inverse is: $0-111 / 2-1 / 2$
Compute the determinant of
1020030450600708
$16-2024-120$
Find a maximal linearly independent subset of the vectors

$$
\begin{aligned}
X_{1} & =(1,0,1,1,0,0) \\
X_{2} & =(1,1,0,0,1,1) \\
X_{3} & =(1,1,1,1,1,1) \\
X_{4} & =(0,0,1,1,0,0) \\
X_{5} & =(0,1,0,0,1,1)
\end{aligned}
$$

$X_{1}, X_{2}, X_{3} X_{1}, X_{2}, X_{3}, X_{4} X_{2}, X_{3}, X_{4} X_{1}, X_{3}, X_{4}, X_{5} X_{1}, X_{3}, X_{5}$
Find the general solution to

$$
y^{\prime}+y=e^{x}
$$

$y=\frac{1}{2} e^{x}+c e^{-x} y=\frac{1}{2}+c e^{-x} y=2 e^{x} y=e^{2 x}+c e^{x} y=\frac{1}{2} e^{2 x}+c e^{-x}$
Solve the initial value problem

$$
\frac{d y}{d x}=\frac{x y}{1+x^{2}}, \quad y(0)=1
$$

$y=\sqrt{1+x^{2}} y=1+\ln \left(\sqrt{1+x^{2}}\right) y=e^{\tan ^{-1}(x)} y=1+\ln \left(1+\tan ^{-1}(x)\right) y=0$
Ground water seeps into a cylindrical retention pond at a rate of $100 \mathrm{ft}^{3}$ per minute. There is storm drain above the pond and when the water reaches this level it drains out at a rate proportional to the height h of the pond above the storm drain. A county engineer measures the flow in the storm drain to be $50 \mathrm{ft}^{3}$ per minute when h is 3 in . Find the limiting value for h. 6 in 1 ft 4 in 2 ft 8 in

Suppose the population N of spotted owls in a certain national park satisfies a logistic equation of the form

$$
\frac{d N}{d t}=\left(\frac{500}{N}-1\right)\left(1-\frac{1000}{N}\right) N^{3}
$$

If the current population of spotted owls in the park is 100 , what is the long term population predicted by this model. 01005001000 no limit

A body of mass m is projected upward with initial veliocity v_{0} in a medium offering resistance equal to the magnitude of the velocity. Find an expression for the time t when the body reaches its maximum height. $t=m \ln \left(\frac{v_{0}}{m g}+1\right) t=m \ln \left(\frac{v_{0}}{m g}\right) t=\frac{v_{0}}{g} t=\frac{v_{0}}{m g} t=\sqrt{\frac{m v_{0}}{g}}$

Find the unique solution to

$$
\left(3 x^{2} y+2 y\right) d x+\left(x^{3}-2 y+2 x\right) d y=0
$$

satisfying $y(1)=1 . x^{3} y-y^{2}+2 x y=2 x^{3} y+y^{2}=2 x^{3} y+2 x y=33 x^{2} y+2 x y+y^{2}=6 x^{3}-y^{2}=0$
Find an integrating factor $\mu(x)$ for the equation

$$
\left(y+(y-2 x) e^{-x}\right) d x+\left(1+x e^{-x}\right) d y=0
$$

$\mu(x)=e^{x} \mu(x)=1 \mu(x)=x \mu(x)=x e^{x} \mu(x)=e^{2 x}$
Solve the equation

$$
\frac{d y}{d x}=\frac{x y+y^{2}}{x^{2}}
$$

by making a substitution $v=\frac{y}{x} \cdot y=\frac{x}{c-\ln (x)} y=x(\ln (x)+c) y=\frac{c}{x^{2}} y=-\frac{1}{\ln (x)}+c y=\frac{x}{c-x^{2}}$
Compute the Wronskian of the functions

$$
y_{1}=x \cos (x) \quad y_{2}=x \sin (x)
$$

$x^{2} x^{2}\left(1-2 \sin ^{2}(x)\right) x^{2}\left(1-2 \cos ^{2}(x)\right) 2 x \sin (x) \cos (x) 0$
Solve the initial value problem

$$
\begin{gathered}
y^{\prime \prime}+y\left(y^{\prime}\right)^{3}=0 \\
y(0)=1, \quad y^{\prime}(0)=2
\end{gathered}
$$

$y=(6 x+1)^{1 / 3} y=(4 x+1)^{1 / 2} y=y=e^{2 x} y=(1-4 x)^{-1 / 2} y=(1-6 x)^{-1 / 3}$
Find the general solution of

$$
6 y^{\prime \prime}-7 y^{\prime}+2 y=0
$$

$y=c_{1} e^{x / 2}+c_{2} e^{2 x / 3} y=c_{1} e^{3 x / 2}+c_{2} e^{x / 3} y=c_{1} e^{-x}+c_{2} e^{2 x / 3} y=c_{1} e^{2 x}+c_{2} e^{-2 x / 3} y=c_{1} e^{-2 x / 3}+c_{2} e^{x / 3}$
Find the solution of

$$
y^{\prime \prime}-4 y^{\prime}+4 y=0
$$

satisfying $y(0)=0$ and $y^{\prime}(0)=2 . y=2 x e^{2 x} y=\frac{1}{2}\left(e^{2 x}-e^{-2 x}\right) y=\sin (2 x) y=\cos (2 x) y=x\left(e^{2 x}+e^{-2 x}\right)$
A mass weighing 2 lbs stretches a spring 6 in . The mass is pushed upward, contracting the spring a distance of 1 in , and then released. Suppose air resistance exerts a damping force given by $0.5 u^{\prime}(t)$ where $u(t)$ is the displacement (in ft) from equilibrium with the positive direction down. Determine the subsequent motion. $\left(g=32 \mathrm{ft} / \mathrm{sec}^{2}\right) u=-\frac{1}{12} e^{-4 t}\left(\cos (4 \sqrt{3} t)+\frac{1}{\sqrt{3}} \sin (4 \sqrt{3} t)\right) u=-\frac{1}{12} e^{-t / 8}\left(\cos \left(\frac{\sqrt{107}}{8} t\right)+\right.$ $\left.\frac{1}{\sqrt{107}} \sin \left(\frac{\sqrt{107}}{8} t\right)\right) u=-\frac{1}{12} e^{-2 t}\left(\cos \left(\frac{\sqrt{15}}{2} t\right)+\frac{4}{\sqrt{15}} \sin \left(\frac{\sqrt{15}}{2} t\right)\right) u=-\frac{1}{12} e^{-8 t}\left(\cos \left(\frac{\sqrt{63}}{4} t\right)+\frac{32}{\sqrt{63}} \sin \left(\frac{\sqrt{63}}{4} t\right)\right) u=$ $-\frac{1}{12} e^{-t / 4}\left(\cos \left(\frac{\sqrt{83}}{6} t\right)+\frac{3}{2 \sqrt{83}} \sin \left(\frac{\sqrt{83}}{6} t\right)\right)$

Find the form of a particular solution of

$$
y^{\prime \prime}-4 y^{\prime}+3 y=e^{x}+\cos (x)
$$

$y_{p}=A x e^{x}+B \cos (x)+C \sin (x) y_{p}=A e^{x}+B \cos (x)+C \sin (x) y_{p}=A x^{2} e^{x}+x(B \cos (x)+C \sin (x))$
$y_{p}=\left(A x^{2}+B x+C\right) e^{x}+x(D \cos (x)+E \sin (x)) y_{p}=A e^{x}+x^{2}(B \cos (x)+C \sin (x))$
Given that $y_{1}=x$ and $y_{2}=x^{-1}$ are solutions to a second order homogeneous linear equation

$$
L[y]=0, \quad(x>0)
$$

find a particular solution y_{p} to the equation

$$
L[y]=x^{3}, \quad(x>0)
$$

$y_{p}=\frac{1}{24} x^{5} y_{p}=\frac{1}{4} x^{3}-x^{2}+1 y_{p}=\frac{1}{12} x^{5}-\frac{1}{8} x^{3} y_{p}=\frac{1}{8} x^{3} y_{p}=\frac{1}{3} x^{-3}-\frac{1}{2} x^{3}$
Classify the singular points of the equation

$$
x\left(x^{2}-1\right) y^{\prime \prime}+x(1-x) y^{\prime}+y=0
$$

$x=0, x= \pm 1$ regular $x=0$ regular, $x= \pm 1$ irregular $x=0, x=1$ regular; $x=-1$ irregular $x=0$ irregular, $x= \pm 1$ regular $x=0, x=-1$ regular, $x=1$ irregular

Compute the power series expansion of $f(x)=\frac{1}{1-x}$ centered at $x_{0}=-1 . \quad \sum_{n=0}^{\infty} \frac{1}{2^{n+1}}(x+1)^{n}$ $\sum_{n=0}^{\infty} \frac{1}{2^{n}}(x-1)^{n} \sum_{n=0}^{\infty} \frac{1}{n!}(x+1)^{n} \sum_{n=0}^{\infty} x^{n} \sum_{n=0}^{\infty} \frac{1}{n}(x-1)^{n}$

Determine the recurrence relation for the coefficients of a power series solution centered at $x_{0}=0$ of the equation

$$
y^{\prime \prime}+x^{2} y=0
$$

$a_{n}=-\frac{1}{n(n-1)} a_{n-4} a_{n+1}=-\frac{1}{(n+1) n} a_{n} a_{n}=-\frac{1}{n(n+1)} a_{n-2} a_{n+1}=-\frac{1}{(n+1)} a_{n-2}+\frac{1}{n(n-1)} a_{n-4}$ $a_{n+2}=-\frac{1}{(n+1)} a_{n-2}$

Find the general solution to

$$
x^{2} y^{\prime \prime}-5 x y^{\prime}+13 y=0, \quad(x>0)
$$

$y=x^{3}\left(c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))\right) y=x^{-3}\left(c_{1} \cos (\ln (x))+c_{2} \sin (\ln (x))\right) y=c_{1} x^{-3}+c_{2} x^{2} y=e^{-5 x / 2}\left(c_{1} \cos (\sqrt{17} x)+\square\right.$ $\left.c_{2} \sin (\sqrt{17} x)\right) y=c_{1} x^{5 x / 2}+c_{2} x^{5 x / 2} \ln (x)$

The equation

$$
x^{2} y^{\prime \prime}+x(1+x) y^{\prime}-\frac{1}{4} y=0
$$

has a regular singular point at $x_{0}=0$. Find a series solution corresponding to the larger of the exponents of the singularity. $y=x^{1 / 2}\left(1-\frac{1}{4} x+\frac{1}{16} x^{2}-\frac{5}{384} x^{3}+\ldots\right) y=x^{-1 / 2}\left(1-x+\frac{1}{4} x^{2}-\frac{1}{120} x^{3}+\ldots\right) y=x^{-(1+\sqrt{2}) / 2}(1-$ $\left.\frac{1}{2} x+\frac{1}{4} x^{2}-\frac{3}{196} x^{3}+\ldots\right) y=x^{(1+\sqrt{2}) / 2}\left(1-x+\frac{1}{12} x^{2}-\frac{1}{360} x^{3}+\ldots\right) y=x^{3 / 2}\left(1-x+\frac{1}{15} x^{2}-\frac{13}{240} x^{3}+\ldots\right)$

