Math 226: Calculus IV

Exam I February 13, 1992

Name:
Score: \qquad
Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this answer sheet. There are 15 multiple choice questions worth 6 points each. You start with 10 points.

Let $=10-10203-14$ and $=-23042-10-11$. Compute $2-.4-3-2-4216-1724-184-2-1035$ $48-2168-4-20610-23142-12-2103-246-16-39$

Let $=1-131-1320$ and $=1-12-121$. Compute the matrix product . $2-312-17-4712-24$ $112-321-13020022-42-3-17-217141-3-1212302100$ Not defined.

Which of the following matrices are in row-echelon form?

$$
=0
$$

0
1
-1
0
1
0
1
1
0
0
0

and only, , and only only, and only, , , and
Translate the following system of linear equations into an augmented matrix.

$$
\begin{array}{r}
x_{1}-x_{3}+4 x_{4}-x_{5}=7 \\
x_{2}-x_{3}+2 x_{4}+6 x_{5}=1 \\
2 x_{1}+5 x_{2}+x_{3}-3 x_{5}=4
\end{array}
$$

$10-14-1: 701-126: 12510-3: 41-14-1: 712-16: 1251-3: 4102: 7015: 1-1-11: 4420: 0-16-3:$ $1-14-112-16251-3102015-1-11420-163$

Find the general solution to the system of equations associated to the augmented matrix

$$
12-11: 20112: 00001:-1
$$

```
\(x_{1}=-1+3 x_{3} x_{1}=5-2 x_{2} x_{1}=2 \quad x_{1}=2-2 x_{2} x_{1}=2-5 x_{4}\)
\(x_{2}=2-x_{3} \quad x_{3}=2 \quad x_{2}=0 \quad x_{3}=0 \quad x_{2}=2 x_{4}\)
\(x_{4}=-1 \quad x_{4}=-1 \quad x_{4}=-1 x_{4}=-1 \quad x_{4}=-1\)
Solve the system of equations defined by \(=\) where
```

$$
=10-111-11-10 \quad=x_{1} x_{2} x_{3} \quad=123
$$

$x_{1}=4 x_{1}=3 x_{1}=-2 x_{1}=-1$ No solution exists
$x_{2}=1 x_{2}=1 x_{2}=1 \quad x_{2}=1$
$x_{3}=3 x_{3}=2 x_{3}=-3 x_{3}=-2$

Find the inverse of the matrix
101100011
$010-1111-1010-1-1000-11001-11210-111-10100-110-1101012-1$
Reduce the following matrix to echelon form without exchanging any rows.

$$
12031241541212336277
$$

$12031001-12000000000012031011230012300000120310001-1000000000012031001-1300011000001203100000000000000$
Which of the following gives the determinant of the matrix

$$
61-214-319010-21-781
$$

$2 \operatorname{det} 61-24-311-78-\operatorname{det} 6-214191816 \operatorname{det}-31910-2-7816 \operatorname{det}-31910-2-781+\operatorname{det} 41900-2181-$ $2 \operatorname{det} 4-390101-78 \operatorname{det} 1-21-31910-2+4 \operatorname{det} 1-2110-2-781$ None of the above

Calculate the determinant of the matrix
1234212332124321
$-20-80401200$
If c_{1}, c_{2}, and c_{3} are constants such that $B=[5,7,2]$ is a linear combination, $B=c_{1} V_{1}+c_{2} V_{2}+c_{3} V_{3}$, of the vectors $V_{1}=[1,0,0], V_{2}=[1,1,0]$, and $V_{3}=[1,1,1]$, then $c_{1}=-2 c_{1}=5 c_{1}=0 c_{1}=3$ No such constants exist

Determine a maximal subset of linearly independent vectors from the set of vectors

$$
\begin{gathered}
1=[1,2,3,5], \quad 2=[0,0,0,0], \quad 3=[1,3,2,5], \\
4=[2,3,7,10], \quad 5=[0,1,-1,0]
\end{gathered}
$$

$1,31,3,51,3,4,51,3,41,2,3$
Find an orthonormal set of vectors from the following vectors using the Gram-Schmidt method.

$$
{ }_{1}=[1,0,0,1], \quad 2=[1,0,1,0], \quad 3=[0,1,1,0]
$$

$1=\frac{1}{\sqrt{2}}[1,0,0,1]$
${ }_{2}=\frac{1}{\sqrt{6}}[1,0,2,-1]$
$3=\frac{1}{2 \sqrt{3}}[-1,3,1,1]$
$1=\frac{1}{\sqrt{2}}[1,0,0,1]$
$2=\frac{1}{\sqrt{2}}[1,0,1,0]$
$3=\frac{1}{2}[1,1,-1,-1]$
$1=\frac{1}{\sqrt{2}}[1,0,0,1]$
$2=\frac{1}{\sqrt{6}}[1,0,2,-1]$
$3=\frac{1}{\sqrt{3}}[-1,0,1,1]$
$1=\frac{1}{\sqrt{2}}[1,0,0,1]$
$2=\frac{1}{\sqrt{7}}[1,2,-1,-1]$
$3=\frac{1}{\sqrt{7}}[1,1,2,-1]$
$1=\frac{1}{\sqrt{2}}[1,0,0,1]$
$2=\frac{1}{\sqrt{6}}[1,1,2,-1]$
$3=\frac{1}{\sqrt{14}}[1,3,-2,0]$
Determine the general solution of the differential equation

$$
y^{\prime}-\frac{1}{x} y=x^{2}
$$

$y=\frac{1}{2} x^{3}+c x y=\ln (x)+\frac{1}{3} x^{3}+c y=\frac{1}{3} x^{4}+\frac{c}{x} y=e^{1 / x} x^{2}+c e^{1 / x} y=\frac{1}{3} x^{3} e^{-1 / x}+c e^{-1 / x}$
Find the interval on which a unique solution to the following initial value problem exists.

$$
\cos (x) y^{\prime}+\sin (x) y=e^{x}, \quad y(0)=1
$$

$(-\pi / 2, \pi / 2)(-\pi, \pi)(-2 \pi, 2 \pi)(-\infty, \infty)(0, \pi)$

