Math 226: Calculus IV
Exam III April 21, 1992

Name:
Score: $\qquad$

Record your answers to the multiple choice problems by placing an $\times$ through one letter for each problem on this answer sheet. There are 15 multiple choice questions worth 6 points each. You start with 10 points.

Let $L[y]=y^{\prime \prime}+p(x) y^{\prime}+q(x) y$. Determine which of the following statements is FALSE. If $y_{1}$ and $y_{2}$ are linearly independent solutions to $y^{\prime \prime}=f\left(x, y, y^{\prime}\right)$ then any solution to this differential equation can be written as $c_{1} y_{1}+c_{2} y_{2}$ for some choice of constants $c_{1}$ and $c_{2}$. If $y_{1}$ and $y_{2}$ are linearly independent solutions to $L[y]=0$ then any solution to this differential equation can be written as $c_{1} y_{1}+c_{2} y_{2}$ for some choice of constants $c_{1}$ and $c_{2} . y_{1}$ and $y_{2}$ form a fundamental set of solutions to $L[y]=0$ if and only if $L\left[y_{1}\right]=0$, $L\left[y_{2}\right]=0$, and $W\left(y_{1}, y_{2}\right) \neq 0 . y_{1}$ and $y_{2}$ are linearly independent functions of $x$ if and only if $W\left(y_{1}, y_{2}\right) \neq 0$. If $y_{1}$ and $y_{2}$ are solutions to $L[y]=0$ then $c_{1} y_{1}+c_{2} y_{2}$ is also a solution for any choice of constants $c_{1}$ and $c_{2}$.

Compute the Wronskian of the functions $f(x)=\cos \left(x^{2}\right)$ and $g(x)=\sin \left(x^{2}\right) .2 x 4 x 2 x\left(\cos \left(x^{2}\right)+\sin \left(x^{2}\right)\right)$ $2 x\left(\sin \left(x^{2}\right)-\cos \left(x^{2}\right)\right) 1$

Given that $y_{1}=x^{-1}$ is a solution of

$$
x^{2} y^{\prime \prime}+3 x y^{\prime}+y=0 \quad(x>0)
$$

a second linearly independent solution can be found of the form $y_{2}=v y_{1}$ where $v$ is a non-constant function of $x$. Determine the differential equation $v$ must satisfy. $x v^{\prime \prime}+v^{\prime}=0 v^{\prime}=x v^{\prime \prime}-\frac{1}{x} v^{\prime}=0 v^{\prime \prime}+x v^{\prime}=0$ $v^{\prime}=x^{-2}$

Find the general solution of the homogeneous equation $y^{\prime \prime}+2 y^{\prime}+4 y=0 . \quad y=e^{-x}\left(c_{1} \cos (\sqrt{3} x)+\right.$ $\left.c_{2} \sin (\sqrt{3} x)\right) y=e^{x}(3 \cos (x)+3 \sin (x)) y=e^{-x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right) y=e^{-2 x}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)$ $y=e^{\sqrt{3} x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)$

Suppose $y$ satisfies $4 y^{\prime \prime}-4 y^{\prime}+y=0, y(0)=0$, and $y^{\prime}(0)=1$. Find $y(1)$. $\sqrt{e}$ e $1 / e 1 / \sqrt{e} e^{2}$
Solve the initial value problem

$$
3 y^{\prime \prime}+2 y^{\prime}-y=0, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

$y=\left(3 e^{x / 3}+e^{-x}\right) / 4 y=\left(\sqrt{3} e^{\sqrt{3} x}-3 e^{x}\right) /(\sqrt{3}-3) y=\left(e^{x}+e^{-x}\right) / 2 y=\left(\sqrt{2} e^{\sqrt{2} x}+2 e^{-x}\right) /(\sqrt{2}-2)$ $y=\left(e^{-x}+2 e^{x / 2}\right) / 3$

Find a particular solution, $y_{p}$ to the differential equation

$$
\begin{array}{r}
y^{\prime \prime}-2 y^{\prime}+2 y=x e^{x} \\
y_{p}=x e^{x} y_{p}=(x+1) e^{x} y_{p}=\left(x^{2}+x\right) e^{x} y_{p}=x^{2} e^{x} y_{p}=x e^{x} \cos (x)
\end{array}
$$

Determine the form of a particular solution to the differential equation

$$
y^{\prime \prime}-2 y^{\prime}=x \cos (x)+e^{2 x}
$$

$y_{p}=\left(a_{0} x+a_{1}\right) \cos (x)+\left(b_{0} x+b_{1}\right) \sin (x)+A x e^{2 x} y_{p}=\left(a_{0} x^{2}+a_{1} x\right) \cos (x)+\left(b_{0} x^{2}+b_{1} x\right) \sin (x)+A e^{2 x}$ $y_{p}=\left(a_{0} x^{2}+a_{1} x\right) \cos (x)+\left(b_{0} x^{2}+b_{1} x\right) \sin (x)+(A x+B) e^{2 x} y_{p}=\left(a_{0} x^{2}+a_{1} x\right) \cos (x)+A x e^{2 x} y_{p}=$ $\left(a_{0} x+a_{1}\right) e^{2 x}\left(b_{1} \cos (x)+b_{2} \sin (x)\right)+A e^{2 x}$

Let $y_{p}=u_{1}(x) x+u_{2}(x) e^{x}$ be a particular solution of the differential equation

$$
(1-x) y^{\prime \prime}+x y^{\prime}-y=(x-1)^{2} \quad(x>1)
$$

given by the method of variation of parameters. Find $u_{1} . u_{1}(x)=x u_{1}(x)=(x-1)^{3} / 3 u_{1}(x)=(x-1) e^{x}$ $u_{1}(x)=x(x-1) u_{1}(x)=-(x-1)^{2} / 2$

A mass weighing 16 lbs stretches a spring 4 in . The mass is attached to a viscous damper with damping constant $c$. Determine the value of $c$ if the spring-mass system is to be critically damped (i.e., damped just enough to eliminate oscillations). $c=4 \sqrt{6} c=4 c=4 \sqrt{3} c=8 \sqrt{2} c=8$

Find the power series expansion for $f(x)=\frac{1}{x^{2}}$ centered at $x_{0}=1$. $f(x)=1-2(x-1)+3(x-1)^{2}-$ $4(x-1)^{3}+\cdots f(x)=1+2(x-1)+6(x-1)^{2}+24(x-1)^{3}+\cdots f(x)=1-(x-1)+(x-1)^{2}-(x-1)^{3}+\cdots$ $f(x)=1+\frac{1}{2} x+\frac{1}{3} x^{2}+\frac{1}{4} x+\cdots f(x)=1-x^{2}+x^{3}-x^{4}+\cdots$

Find the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{3^{n} n^{3}}{n!} x^{n} . \infty 1 / 313 \sqrt{3}$
Determine a power series solution to the initial value problem

$$
y^{\prime \prime}-x^{2} y=0, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

$y=1+\frac{1}{4 \cdot 3} x^{4}+\frac{1}{8 \cdot 7 \cdot 4 \cdot 3} x^{8}+\cdots y=1+\frac{1}{3 \cdot 2} x^{3}+\frac{1}{6 \cdot 5 \cdot 3 \cdot 2} x^{6}+\cdots y=1+\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}+\cdots y=1-\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}-\cdots$ $y=1-\frac{1}{4.3} x^{4}+\frac{1}{8.7} x^{8}-\cdots$

Determine the recurrence relation for the coefficients of a power series solution centered at $x_{0}=0$ of the differential equation

$$
\left(1-x^{2}\right) y^{\prime \prime}+x y^{\prime}-y=0
$$

$a_{n+2}=\frac{(n-1)^{2}}{(n+2)(n+1)} a_{n} a_{n+2}=\frac{n}{(n+2)(n+1)} a_{n+1}-\frac{1}{(n+1)} a_{n} a_{n+2}=\frac{n(n-1)}{(n+2)(n+1)} a_{n} a_{n+2}=\frac{n}{(n+2)} a_{n+1}-\frac{1}{(n+2)(n+1)} a_{n}$ $a_{n+2}=\frac{(n-1)}{(n+2)(n+1)} a_{n}$

Determine a minimum for the radius of convergence of a power series solution centered at $x_{0}=3$ to the differential equation

$$
\left(x^{2}+x\right) y^{\prime \prime}-x y^{\prime}+(x+1) y=0
$$

$312 \infty 0$

