Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this answer sheet. There are 25 multiple choice questions worth 6 points each.

Let $A=[1,2,3]$ and $B=456$. Compute the matrix product $B \cdot A$.
48125101561218 [32] 12345645681012121518 not defined
Let $A=0-1111-1210$. The $(3,2)$-entry of the inverse matrix A^{-1} is: $-221-10$
Calculate the determinant of the matrix $13-142101002-10001$. -10 2-4-6 8
Find the general solution to the following system of linear equations:

$$
\begin{aligned}
x_{1}+x_{3} & =1 \\
2 x_{1}+x_{2}+4 x_{3}-x_{4} & =5 \\
3 x_{1}+x_{2}+6 x_{3} & =10 \\
4 x_{1}+x_{2}+6 x_{3}-x_{4} & =7
\end{aligned}
$$

$x_{1}=-3+x_{4} \quad x_{1}=1-x_{3} \quad x_{1}=-3 x_{1}=-\frac{1}{2}+\frac{1}{2} x_{2}-\frac{1}{2} x_{4}$ the system is inconsistent $x_{2}=-5+3 x_{4} x_{2}=5-2 x_{3} x_{2}=-5 x_{2}=\frac{3}{2}-\frac{1}{2} x_{2}-\frac{1}{2} x_{4}$
$x_{3}=4-x_{4} \quad x_{4}=-7 \quad x_{3}=4$

$$
x_{4}=0
$$

If the Gram-Schmidt process is applied to the vectors

$$
X_{1}=[1,1,0,1], \quad X_{2}=[0,0,1,0], \quad X_{3}=[1,0,1,1]
$$

to obtain the vectors Q_{1}, Q_{2}, Q_{3}, then: $Q_{3}=\frac{1}{\sqrt{6}}[1,-2,0,1] Q_{3}=\frac{1}{\sqrt{2}}[1,-1,0,0] Q_{3}=\frac{1}{\sqrt{2}}[0,1,0,-1]$ $Q_{3}=\frac{1}{\sqrt{14}}[2,-3,0,1] Q_{3}=\frac{1}{\sqrt{6}}[1,1,0,-2]$

Suppoose y satisfies $x y^{\prime}-3 y=4 x$ and $y(1)=0$. Calculate $y(2)$. 1248610
Determine which of the following equations defines the integral curves of the differential equation

$$
x^{2} y^{\prime}+y^{2}=1
$$

$y=\frac{c-e^{2 / x}}{c+e^{2 / x}} y=\frac{c-e^{2 x}}{c+e^{2 x}} y=\frac{e^{x / 2}-c}{e^{x / 2}+c} y=\frac{e^{x}-c}{e^{x}+c} y=\frac{e^{-x}-c}{c e^{x}+1}$
A 50 gal drum is filled with water having a 10% concentration of cleaning fluid. Fresh water is added to the drum at a rate of $2 \mathrm{gal} / \mathrm{min}$ and the well-stirred mixture is siphoned out of the drum at the same rate. Calculate how long it will take the concentration of cleaning fluid to fall below 1%. 57.6 min 45.3 min 37.5 $\min 69.2 \mathrm{~min} 28.4 \mathrm{~min}$

Classify the equilibrium solutions of the logistic equation

$$
\frac{d N}{d t}=N\left(1-N^{2}\right)
$$

$N=1$ stable, $N=0$ unstable, $N=-1$ stable $N=1$ unstable, $N=0$ stable, $N=-1$ stable $N=1$ stable, $N=0$ unstable, $N=-1$ unstable $N=1$ unstable, $N=0$ stable, $N=-1$ unstable $N=1$ stable, $N=0$ stable, $N=-1$ unstable

Air resistance on a 160 lb skydiver with an unopened parachute is proportional to the square of the velocity, $k v^{2}$. After falling 20 seconds, the skydiver is observed to have a steady rate of descent of $200 \mathrm{ft} / \mathrm{sec}$. What value of k yields this terminal velocity? (Use the given units of lbs, ft, sec.) 0.0040 .160 .020 .85 .0

Find the equation of the integral curve for the differential equation

$$
\left(e^{x} \cos (y)+2 x-y^{2}\right) d x-\left(e^{x} \sin (y)+2 x y-1\right) d y=0
$$

that passes through the point $(0,0)$.
$e^{x} \cos (y)+x\left(x-y^{2}\right)+y=1 e^{x} \sin (y)+x y^{2}-y=0 e^{x} \cos (y)+x^{2}-x y^{2}=1 e^{x} \sin (y)+x y^{2}-y=0$
$e^{x}(\cos (y)-\sin (y))-x^{2} y+y=1$
Find an integrating factor μ for the differential equation

$$
\left(e^{x}+x^{2} e^{y^{2}}\right) d x-2 y\left(e^{x}+e^{y^{2}}\right) d y=0
$$

$\mu=e^{-y^{2}} \mu=e^{-x} \mu=e^{y^{2}} \mu=e^{x} \mu=\frac{1}{2} y$
Solve the differential equation

$$
\frac{d y}{d x}=\frac{x \tan (y / x)+y}{x}
$$

$\sin (y / x)=c x \ln |\sin (y / x)|=\frac{1}{2} x^{2}+c \sec ^{2}(y / x)=\frac{1}{2} x^{2}+c \cos (y / x)=c y \ln |\cos (y / x)|=y+c$
Solve the initial value problem

$$
y^{2} y^{\prime \prime}-\left(y^{\prime}\right)^{3}=0, \quad y(0)=1, \quad y^{\prime}(0)=2
$$

$x=\frac{1}{2}(1-y)+\ln |y| y=e^{2 x} y=\sqrt{4 x+1} y=-2+\sqrt{4 x+9} x=\frac{1}{2}(1-y)^{2}$
Given that $y_{1}=e^{x}$ is a solution to the differential equation

$$
(x-1) y^{\prime \prime}-x y^{\prime}+y=0
$$

A second linearly independent solution can be found of the form $y_{2}=v y_{1}$ where v is a non-constant function of x. Determine the differential equation v must satisfy. $(x-1) v^{\prime \prime}+(x-2) v^{\prime}=0(x-1) v^{\prime \prime}-x v^{\prime}+2 v=0$ $(x-1) v^{\prime \prime}+(x+1) v^{\prime}=0 e^{x}(x-1) v^{\prime \prime}-x v^{\prime}=0(x-1) v^{\prime \prime}-x v^{\prime}+2 e^{x} v=0$

Determine a suitable form for a particluar solution y_{p} of the differential equation

$$
y^{\prime \prime}-4 y^{\prime}+4 y=4 x e^{2 x}+x \sin (2 x)
$$

$y_{p}=x^{2}\left(A_{1} x+A_{0}\right) e^{2 x}+\left(B_{1} x+B_{0}\right) \sin (2 x)+\left(C_{1} x+C_{0}\right) \cos (2 x) y_{p}=x\left(A_{1} x+A_{0}\right) e^{2 x}+x\left(B_{1} x+B_{0}\right) \sin (2 x)+$ $x\left(C_{1} x+C_{0}\right) \cos (2 x) y_{p}=\left(A_{1} x+A_{0}\right) e^{2 x}+\left(B_{1} x+B_{0}\right) \sin (2 x)+\left(C_{1} x+C_{0}\right) \cos (2 x) y_{p}=A x e^{2 x}+B x \sin (2 x)+$ $C x \cos (2 x) y_{p}=A x^{2} e^{2 x}+\left(B_{1} x+B_{0}\right) \sin (2 x)+\left(C_{1} x+C_{0}\right) \cos (2 x)$

Let $L[y]=y^{\prime \prime}+p(x) y^{\prime}+q(x)$. Suppose x and x^{-1} are solutions to $L[y]=0$. Calculate a particular solution $y_{p}=u_{1}(x) x+u_{2}(x) x^{-1}$ to the differential equation $L[y]=x^{3}$ using the method of variation of parameters. $y_{p}=\frac{1}{24} x^{5} y_{p}=\frac{1}{8} x^{4}-\frac{1}{12} x^{6} y_{p}=\frac{1}{6} x^{6} y_{p}=\frac{1}{2}\left(x^{4}-x\right) y_{p}=\frac{1}{20} x^{5}-\frac{1}{6} x^{3}$

Suppose a man suspended from a bungee cord stretches the cord 16 feet longer than its natural length of 34 ft . The man jumps from a bridge while attached to this cord and arrives at a distance of 50 ft below the bridge with a downward velocity of $75 \mathrm{ft} / \mathrm{sec}$. At this point the cord starts acting like a spring (i.e., it obeys Hooke's Law.) Assuming there are no frictional forces, how long will it take for the man to return to the point 50 ft below the bridge? $\pi \sqrt{2} / 2 \pi \sqrt{6} / 2 \pi / 2 \pi \sqrt{3} / 3 \pi \sqrt{6} / 3$

Find the recurrence relation for the coefficients of a power series solution to the differential equation

$$
\begin{gathered}
\left(1+x^{2}\right) y^{\prime \prime}-x y^{\prime}+y=0 \\
a_{n}=\frac{(n-3)^{2}}{n(n-1)} a_{n-2} a_{n+2}=\frac{n}{(n+2)(n+1)} a_{n} a_{n+2}=-\frac{1}{(n+2)(n+1)} a_{n} a_{n}=\frac{n-1}{n} a_{n-2} a_{n}=\frac{(n-1)^{2}}{(n+2)(n+1)} a_{n-2}
\end{gathered}
$$

Find the first three non-zero terms of a power series solution to the initial value problem

$$
\begin{aligned}
& \quad\left(4-x^{2}\right) y^{\prime \prime}+2 y=0, \quad y(0)=0, \quad y^{\prime}(0)=1 \\
& y=x-\frac{1}{12} x^{3}-\frac{1}{240} x^{5}-\cdots y=x-\frac{1}{24} x^{3}+\frac{1}{20} x^{5}-\cdots y=x-\frac{1}{24} x^{3}-\frac{1}{480} x^{5}-\cdots y=x-\frac{1}{12} x^{3}+\frac{1}{120} x^{5}-\cdots \\
& y=x-\frac{1}{6} x^{3}-\frac{1}{80} x^{5}-\cdots
\end{aligned}
$$

Classify the singular points of the differential equation

$$
x^{2}(x-1)^{2} y^{\prime \prime}+2 x y^{\prime}+\left(x^{2}-1\right) y=0
$$

$x=0$ regular, $x=1$ irregular $x=0$ regular, $x=1$ regular, $x=-1$ irregular $x=0$ regular, $x=1$ regular $x=0$ irregular, $x=1$ irregular $x=0$ irregular, $x=1$ regular, $x=-1$ regular

Determine the general solution of the differential equation

$$
x^{2} y^{\prime \prime}-5 x y^{\prime}+10 y=0
$$

$y=x^{3}\left(c_{1} \cos (\ln |x|)+c_{2} \sin (\ln |x|)\right) y=x^{5 / 2}\left(c_{1} \cos \left(\frac{\sqrt{15}}{2} \ln |x|\right)+c_{2} \sin \left(\frac{\sqrt{15}}{2} \ln |x|\right)\right) y=e^{5 / 2}\left(c_{1} \cos \left(\frac{\sqrt{15}}{2} x\right)+\right.$ $\left.c_{2} \sin \left(\frac{\sqrt{15}}{2} x\right)\right) y=e^{3 x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right) y=c_{1} x^{-3}+c_{2} x^{-5}$

The equation

$$
x^{2} y^{\prime \prime}+(x+\sin (x)) y^{\prime}-y=0
$$

has a regular singular point at $x=0$. Determine the exponents of the this singularity. $r_{1}=\frac{-1+\sqrt{5}}{2}, \quad r_{2}=$ $\frac{-1-\sqrt{5}}{2} r_{1}=-\frac{1}{2}+i \frac{\sqrt{3}}{2}, \quad r_{2}=-\frac{1}{2}-i \frac{\sqrt{3}}{2} r_{1}=1, \quad r_{2}=-1 r_{1}=1, \quad r_{2}=0 r_{1}=r_{2}=1$

The differential equation

$$
2 x^{2} y^{\prime \prime}+3 x y^{\prime}+\left(2 x^{2}-1\right) y=0
$$

has a regular singular point at $x=0$. Find a series solution corresponding to the larger of the exponents of the singularity. $y=x^{1 / 2}\left(1-\frac{1}{7} x^{2}+\frac{1}{154} x^{4}-\cdots\right) y=x^{1 / 2}\left(1-\frac{1}{4} x^{2}+\frac{1}{64} x^{4}-\cdots\right) y=x\left(1-x^{2}+\frac{1}{10} x^{4}-\cdots\right)$ $y=x^{-1}\left(1-\frac{1}{14} x^{2}+\frac{1}{182} x^{4}-\cdots\right) y=x\left(1-\frac{1}{10} x^{2}+\frac{1}{440} x^{4}-\cdots\right)$

Solve the initial value problem

$$
x^{2} y^{\prime \prime}+7 x y^{\prime}+9 y=0, \quad y(1)=0, \quad y^{\prime}(1)=2
$$

$y=2 \ln |x| / x^{3} y=\left(x^{3}-x^{-3}\right) / 3 y=-\frac{2}{3} x^{-3} y=\frac{2}{7}\left(x^{7 / 2}-x^{-7 / 2}\right) y=\frac{1}{\sqrt{13}} x^{7 / 2} \sin \left(\frac{\sqrt{13}}{2} \ln |x|\right)$

