1. The general solution of the equation $xy' - y = x^3$ is

a.
$$\frac{x^3}{3}$$
 + Cx b. $\frac{x^3}{2}$ + Cx c. x^2 + Cx d. x^3 + $\frac{C}{x}$ e. $\frac{x^3}{3}$ + $\frac{C}{x}$

2. Consider the equation
$$\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}$$
. Which statement is true?
a. $y = x \tan(\log x + x)$ is a solution b. $y = x \tan(\log x - x)$ is a solution
c. $y = x \tan(\log x)$ is a solution d. None of the above is correct

e. All (a-c) are correct

3. Let y be the solution of $\frac{dy}{dx} = \frac{xy}{1+x^2}$, y(0) = 1 Then a. $y(1) = 1 + \log \sqrt{2}$ b. y(1) = 0 c. $y(1) = e^{\frac{\pi}{4}}$ d. $y(1) = 1 + \log (\frac{\pi}{4} + 1)$ e. $y(1) = \sqrt{2}$

4. Consider the differential equation with initial condition

$$y' = \sqrt{1 - y^2}$$
, $y(0) = \frac{1}{2}$

- a. There exists a unique solution for the initial value problem.
- b. There exist two solutions for the initial value problem.
- c. There exist infinitely many solutions for the initial value problem.
- d. There exists no solution for the initial value problem.
- e. There exist more than two but finitely many solutions.

5. Let y be the solution to the equation

$$(y \cos x + 2 x e^{y}) + (\sin x + x^{2} e^{y} - 1) y' = 0$$

Which is true?

- a. $y \sin x x^2 e^y + y = C$ b. $y \sin x + x^2 e^y - y = C$
- c. $x \sin y y^2 e^y + x = C$ d. $x \sin y + x^2 e^y + x = C$

e. $y \sin x + x^2 e^y + y = C$

6. Consider the equation
$$\frac{dN}{dt} = N(N-1)(N-2)$$
 Which is true?

- a. N=2 is the only stable critical solution
- b. N=2 and N=0 are stable critical solutions
- c. N=1 is the only stable critical solution
- d. There is no stable critical solution
- e. N=0 is not a critical solution

7. Suppose the half-life of a certain radioactive isotope is 20 days. If we start with 100 g of isotope, find the amount left after 10 days.

a. $\frac{100}{\sqrt{2}}$ b. $\frac{100}{^{3}\sqrt{2}}$ c. $100\sqrt{2}$ d. $100\sqrt{3}\sqrt{2}$ e. $\frac{100}{\sqrt{3}}$

8. A body with m=1 falls from rest in a medium offering resistance force equal to gv^2 , where g is the gravitational constant and v is the velocity.

- a. Write down the differential equation of the motion.
- b. Find the relation between the velocity \boldsymbol{v} and the time $\ t.$
- c. Find the limiting velocity

9. Solve the equation

 $(3xy + y^2) + xy y' = 0, y (1) = 1$

Hint: Find an integrating factor which is a function of x.