1. Compute the Wronskian of the functions

$$y_{2} = e^{-x} \cos 2x$$
 $y_{2} = e^{-x} \sin 2x$

a. e^{-x} b. e^{-2x} c. 0 d. 2e^{-x} e. 2e^{-2x}

2. Which of the following pair of functions is linearly dependent?

a. f(x) = 1 + 2x, g(x) = 1-2xb. $f(x) = e^{x+1}$, $g(x) = e^{x-1}$

- c. $f(x) = e^{x}$, $g(x) = e^{-x}$ d. $f(x) = \sin x$, $g(x) = \sin^{2} x$
- e. $f(x) = \sin^2 x$, $g(x) = \cos^2 x$

3. Suppose y_1 and y_2 are two solutions to $y'' - 2xy' + x^2 y = 0$ Their Wronskian at 0 is equal to 1. Then the Wronskian at 1 is equal to 1 a. e¹b. e⁻¹ c. e² d. e⁻² e. 0

- 4. The general solutions of the equation y'' 4y' = 0 are a. $y = c_1 \cos 2x + c_2 \sin 2x$ b. $y = c_1 e^{-4x} + c_2 x$
- c. $y = c_1 e^{4x} + c_2$ d. $y = c_1 e^{-4x} + c_2$
- e. $y = c_1 e^{-4x} + c_2 x$

5. The solution of the differential equation

$$y'' + 2y' + 2y = 0$$
, $y(0) = 0$, $y'(0) = 1$

is

a. $y = e^{-x} \cos x$ b. $y = e^{x} \cos x$ c. $y = e^{x} \sin x$

d. $y = e^{-x} \sin x$ e. $y = e^{-x} \sin x \cos x$

6. A particular solution to y'' - 3y' = x + 2 should have the following form a. Ax + B b. x (Ax + B) c. $x^2 (A x + B)$ d. $e^{3x} (A x + B)$ e. $xe^{3x} (Ax + B)$

7. Find the general solution $y'' + 9y = \sin 3x$

8. Find the general solution of the differential equation

 $y'' + 4y = \sec 2x$

9. Check that $y_1 = x$ is a solution of $x^2 y'' + 2xy' - 2y = 0$ (x>0) and find a second linearly independent solution.