Mathematics 226.02: Differential Equations and Linear Algebra
 Fall Semester 1997
 Solutions of Exam 1

1. Solve the following initial value problem and determine the interval, where the solution is defined.

$$
\left(x^{2}-4\right) \frac{d y}{d x}+2 x y=\frac{2 x^{2}-8}{x}, \quad y(1)=2
$$

Solution: This is a linear equation, which can be rewritten as

$$
\frac{d y}{d x}+\frac{2 x}{x^{2}-4} y=\frac{2}{x}
$$

The integrating factor is

$$
\mu=\exp \int \frac{2 x}{x^{2}-4} d x=x^{2}-4
$$

and therefore the general solution is given by

$$
y=\frac{\int\left(2 x-\frac{8}{x}\right) d x+c}{x^{2}-4}=\frac{x^{2}-8 \ln x+c}{x^{2}-4} .
$$

From the initial condition one calculates $c=-7$ so that the solution of the problem is

$$
y=\frac{x^{2}-8 \ln x-7}{x^{2}-4} \quad \text { defined on the interval } 0<x<2
$$

2. Find the value of a, for which the equation is exact, and then solve it using that value of a.

$$
\left(y^{2}+x^{3}+2 x\right)+\left(a x y+y^{2}+3\right) \frac{d y}{d x}=0
$$

Solution: The equation is exact for $a=2$.
For this value, the solution of the differential equation is obtained as follows: define

$$
\psi=\int\left(y^{2}+x^{3}+2 x\right) d x+h(y)=x y^{2}+\frac{1}{4} x^{4}+x^{2}+h(y)
$$

Then the partial derivative with respect to y of ψ has to be equal to $2 x y+y^{2}+3$, thus we get

$$
\psi_{y}=2 x y+h^{\prime}(y)=2 x y+y^{2}+3
$$

hence $h^{\prime}(y)=y^{2}+3$ and we can take $h(y)=\frac{1}{3} y^{3}+3 y$. The implicit formula for the solution is

$$
x y^{2}+\frac{1}{4} x^{4}+x^{2}+\frac{1}{3} y^{3}+3 y=c
$$

3. (a) Solve the differential equation

$$
x^{3} \frac{d y}{d x}+(y-2)^{2}=0
$$

Solution: Separating variables leads to the expression

$$
\frac{1}{(y-2)^{2}} d y+\frac{1}{x^{3}} d x=0
$$

Integrating this equation yields

$$
-\frac{1}{y-2}-\frac{1}{2 x^{2}}=c
$$

which can be solved for y :

$$
y=\frac{2 x^{2}}{-2 c x^{2}-1}+2
$$

The function $y=2$ is a solution, too.
(b) Find an implicit expression for the solution of the differential equation

$$
x \frac{d y}{d x}=y+2 x e^{\frac{y}{x}}
$$

Solution: This is a homogeneous equation

$$
\frac{d y}{d x}=\frac{y}{x}+2 e^{\frac{y}{x}}
$$

The transformation of variables $v=\frac{y}{x}$ leads to the equation

$$
\frac{1}{x} d x=\frac{1}{2 e^{v}} d v
$$

which after integration yields

$$
\ln |x|+c=-\frac{1}{2} e^{-v}
$$

and substituting back $\frac{y}{x}$ for v results in

$$
2 \ln |x|+C+e^{\frac{-y}{x}}=0 .
$$

4. (a) A skydiver weighing 160 lbs . (including equipment) falls vertically down from a certain high altitude. The parachute opens when the skydiver reaches speed equal to $130 \mathrm{ft} / \mathrm{sec}$. Assume that $t=0$ when the parachute opens and that the air resistance is $10|v|$ when the parachute is open. Assume also that the gravitational force is $32 \mathrm{ft} / \mathrm{sec}^{2}$.
(i) Write the initial value problem (i. e. a differential equation and an initial condition) for the speed $v(t)$ at any time $t>0$. DO NOT SOLVE IT!
(ii) Find the limiting velocity v_{L} of the skydiver after the parachute opens.

Solution: Newton's law says: mass \times acceleration $=$ external force.
In the present case the external force is given by

$$
\text { weight of the skydiver minus air resistance }=160-10 v
$$

(the weight acts in the direction of the motion, the air resistance acts in the opposite direction). The mass m of the skydiver is related to his/her weight via

$$
\text { weight }=160=m \times \text { gravitational force, thus } m=160 / 32=5
$$

Therefore we get the equation $5 \frac{d v}{d t}=160-10 v$. The motion under consideration starts with time $t=0$ when the parachute opens, which is when the speed is 130 . Hence we get the initial value problem

$$
\frac{d v}{d t}=32-2 v, \quad v(0)=130
$$

The limiting velocity is reached when $v^{\prime}=0$, thus we have to solve the equation $32-2 v=0$, which leads $v_{L}=16$.
(b) Circle the differential equation whose direction field is shown in the following picture.
A. $y^{\prime}=y(x+y)$
B. $y^{\prime}=(x-y)(x+y)$
C. $y^{\prime}=(2-y)(x+y)$
D. $y^{\prime}=(y-2)(x+y)$
E. $(x-2)(x+y)$
5. (a) Consider a tank holding initially 500 gallons of a salt solution with concentration 0.3 lb of salt per gallon. A solution containing 0.4 lb of salt per gallon is pumped into the tank at a rate of 3 gallons per minute, and the well-stirred mixture flows out of the tank at a rate of 5 gallons per minute. Write the initial value problem (i. e. a differential equation and an initial condition) needed to find the amount $S(t)$ of salt in the tank at time $t>0$ prior to the instant when the tank is empty. DO NOT SOLVE IT!
Solution: Measure the time in minutes.
Each minute $3 \times 0.4=1.2$ pounds of salt flow into the tank.
Each minute 3 gallons of solution enter the tank whereas 5 gallons flow out. As a result, the tank looses 2 gallons per minute. Hence, at time t there are $500-2 t$ gallons of solution in the tank. The amount of salt per gallon in the tank at time t is therefore given by the ratio $\frac{S(t)}{500-2 t}$.
This means that $5 \times \frac{S(t)}{500-2 t}$ pounds of salt are leaving the tank at time t.
At the beginning $500 \times 0.3=150$ pounds of salt are in the tank.
All this together leads to the initial value problem

$$
\frac{d S}{d t}=1.2-\frac{5}{500-2 t} S(t), \quad S(0)=150
$$

(b) Find the constant (equilibrium) solutions of the differential equation

$$
\frac{d y}{d t}=-0.002\left(1-\frac{y}{3}\right)\left(1-\frac{y}{7}\right) y
$$

and classify each one as asymptotically stable or unstable. Sketch the graphs of the four solutions $y_{1}, y_{2}, y_{3}, y_{4}$, which have initial values $y_{1}(0)=3, y_{2}(0)=4, y_{3}(0)=7, y_{4}(0)=1$.
Solution: The solutions $y=0$ and $y=7$ are asymptotically stable, the solution $y=3$ is unstable.

