$1_{a}$. Find the general solution of the differential equation: $y^{\prime \prime}+2 y^{\prime}+3 y=0$.

## Answer:

$1_{b}$. Solve the following initial value problem: $y^{\prime \prime}+4 y=t^{2}+3 e^{t}, y(0)=0, y^{\prime}(0)=0$.
2. Find the general solution of the differential equation: $t y^{\prime \prime}+y^{\prime}=t, t>1$.

Answer:
3. Find the general solution of the differential equation: $y^{\prime \prime}-10 y^{\prime}+25 y=$ $x^{-2} e^{5 x}, x>0$.
$4_{a}$. If the Wronskian of $f$ and $g$ is $W(f, g)=x^{2} \cos x$ and if $u=f+g$ and $v=f-g$, find the Wronskian of $u$ and $v$.

## Answer:

$4_{b}$. Suppose that $y^{\prime \prime}-t y=\cos t$ and that $y(0)=1$ and $y^{\prime}(0)=\pi$. Find $y^{\prime \prime \prime}(0)$.

## Answer:

5. A mass $m$ stretches a spring 2 ft . If the mass is set in motion from its equilibrium position with a downward velocity of $16 \mathrm{ft} / \mathrm{sec}$ and if there is no air resistance or other damping factors, determine the position of the mass at any time. What is the period of the motion? (Assume the gravitational constant $g=32 \mathrm{ft} / \mathrm{sec}^{2}$ ).

Answer:

