\qquad

Math 226: Differential Equations and Linear Algebra

Fall Semester 1998
Exam 1
September 28, 1998

This Examination contains 8 problems on 7 sheets of paper including the front cover. Do all your work in this booklet and show your computations. Calculators, books, and notes are not allowed.

Scores

Question	Possible	Actual
1	15	
2	15	
3	15	
4	5	
5	15	
6	15	
7	10	
8	10	
Total	100	

Sign the pledge:
"On my honor, I have neither given nor received unauthorized aid on this Exam."
Signature: \qquad

GOOD LUCK

1. Solve the following initial value problem and determine the interval where the solution is defined.

$$
\left(t^{2}-9\right) \frac{d y}{d t}+2 t y=\frac{2 t^{2}-18}{t^{2}}, \quad y(1)=-1
$$

Answer:
2. Find the value of a, for which the equation is exact, and then solve it using that value of a.

$$
\left(3 x^{2}-a x y^{2}+2 y\right) d x+\left(3 y^{2}-2 x^{2} y+2 x\right) d y=0
$$

You may leave your answer in implicit form.

Answer:
3. Find the general solution of the equation

$$
2 x \frac{d y}{d x}=2 y+x e^{\frac{y}{x}}
$$

You may leave your answer in implicit form.

Answer:

4. (5 points, no partial credit) Circle the differential equation whose direction field is shown in the following picture.
A. $y^{\prime}=y(x-y)$
B. $y^{\prime}=(x-y)(x+y)$
C. $y^{\prime}=(1-y)(x-y)$
D. $y^{\prime}=(y-1)(x-y)$
E. $y^{\prime}=(x-1)(x-y)$
5. A tank initially contains 300 gallons of pure water. A mixture containing 1 lb of salt per gallon enters the tank at a rate of $3 \mathrm{gal} / \mathrm{min}$. The well-stirred mixture leaves the tank at a rate of 5 gal/min.
Write the initial value problem needed to find the amount of salt $S(t)$ in the tank at time $t>0$ prior to the instant when the tank is empty. Do not solve it!
[Hint: First you should figure out how many gallons of mixture are in the tank at time t.]

Answer:
6. Given the differential equation

$$
\frac{d y}{d t}=2 y(y-1)(y-3) .
$$

Do not attempt to solve it!
(a) Find the (constant) equilibrium solutions and classify each one as asymptotically stable, unstable, or semistable.
(b) Sketch the graphs of the four solutions y_{1}, y_{2}, y_{3}, and y_{4} which have initial condition $y_{1}(0)=1, y_{2}(0)=2, y_{3}(0)=3$, and $y_{4}(0)=0.5$. Neglect concavity.
7. Find the solution of the initial value problem

$$
6 y^{\prime \prime}-7 y^{\prime}+y=0, \quad y(0)=0, \quad y^{\prime}(0)=5 .
$$

Answer:

\qquad
8. Determine the largest interval in which the following initial value problem is certain to have a unique twice differentiable solution.

$$
(t-3)(t-1) t y^{\prime \prime}+t^{2} y^{\prime}+(t-1) y=\sin t, \quad y(2)=-3, \quad y^{\prime}(2)=4
$$

Do not attempt to find the solution!

Answer: \qquad

