- 1. Let y(t) be a solution of the equation $t^2y'-y=-1$ defined for t>0. Find $\lim_{t\to 0^+}y(t)$.
 - (a) 1 (b) 0 (c) ∞ (d) -1 (e) It can be different for different solutions.
- 2. Classify the stable equilibrium points for the equation

$$\frac{dN}{dt} = \begin{vmatrix} N^2 & 0 & 2N-2\\ 0 & 1 & 0\\ 2N-2 & 0 & (N-1)^2 \end{vmatrix}.$$

- (a) One stable, one unstable, and one semistable. (b) Two stable, one unstable, and none semistable.
- (c) One stable, two unstable and none semistable. (d) Two stable and two semistable. (e) Two unstable and two semistable.
- 3. For what value of the constant b will the following differential equation be exact?

$$(ye^{3xy} - x)dx + bxe^{3xy}dy = 0$$

- (a) 1 (b) 3 (c) -1 (d) 0 (e) No value of b.
- 4. The water bath surrounding a certain nuclear reactor contains radioactive material that decays with a half-life of 5 days. New radioactive material is added to the bath at the constant rate of 1 gram per day. Assume the bath contains no radioactive material initially. Find an expression for the amount Q(t) of grams of radioactive material after t days.

(a)
$$Q(t) = \frac{5}{\ln 2} (1 - (\frac{1}{2})^{\frac{t}{5}})$$
 (b) $Q(t) = \frac{5}{\ln 2} ((\frac{1}{2})^{\frac{t}{5}} - 1)$ (c) $Q(t) = 5 \ln 2((\frac{1}{2})^{\frac{t}{5}} - 1)$ (d) $Q(t) = 5 \ln 2(1 - (\frac{1}{2})^{\frac{t}{5}})$ (e) $Q(t) = (1 - (\frac{1}{2})^{\frac{t}{5}})$

- 5. The equation $y' = \frac{x^2 14xy + 3y^2}{7x^2 + y^2} 1$ is
 - (a) homogeneous. (b) linear. (c) separable but not exact. (d) exact with a suitable choice of integrating factor. (e) none of the others.
- 6. A particular solution of $y'' + y = t \cos t$ has the form
 - (a) $(At^2+Bt)\cos t + (Ct^2+Dt)\sin t$. (b) $(At+B)\cos t + (Ct+D)\sin t$. (c) $(At+B)\cos t + (At+B)\sin t$. (d) $At^2\cos t + Bt^2\sin t$. (e) $(At+B)\cos t$
- 7. The general solution of the equation $y'' + y = \csc t$, for $0 < t < \pi$ is
 - (a) $c_1 \cos t + c_2 \sin t t \cos t + (\sin t) \ln \sin t$. (b) $c_1 \sin t + c_2 \cos t + t \sin t (\cos t) \ln \sin t$. (c) $c_1 e^t \sec t + c_2 e^t \csc t$. (d) $c_1 t \sin t + c_2 (\cos t) \ln \sin t$. (e) $(c_1 + t) \cos t + (c_2 + \ln \cos t) \sin t$.
- 8. Find y(1) if y'' + 4y' + 5y = 0, y(0) = 1, y'(0) = 0.
 - (a) 0.301 (b) 0.187 (c) 0.241 (d) 0.282 (e) 0.666
- 9. For x > 0 the Wronskian of two independent solutions of the Euler equation $x^2y'' + xy' y = 0$ is a constant multiple of
 - (a) $\frac{1}{x}$. (b) x. (c) $\frac{1}{x^2}$. (d) x^2 . (e) 1.

10. Find y(1) if y(t) is the solution of the initial value problem

$$y'' - y' = -2t$$
, $y(0) = 0$, $y'(0) = 2$.

- (a) 3 (b) 4 + e (c) 4 (d) e + 2 (e) 1
- 11. Find the first three nonzero terms of a power series solution to the initial value problem

$$(1-x^2)y'' + 3y = 0$$
, $y(0) = 0$, $y'(0) = 1$.

- (a) $x \frac{1}{2}x^3 \frac{3}{40}x^5$ (b) $1 + \frac{1}{2}x^3 \frac{3}{8}x^5$ (c) $x \frac{1}{2}x^3 + \frac{3}{20}x^5$ (d) $1 + x + \frac{1}{3}x^3$ (e) $x \frac{1}{6}x^3 \frac{1}{40}x^5$
- 12. The equation $(x^2 + 16)y'' + 3y' 4x^2y = 0$ has a series solution in powers of x 3. From the general theory, its radius of convergence ρ must satisfy
 - (a) $\rho \ge 5$. (b) $\rho \ge 4$. (c) $\rho \ge 3$. (d) $\rho \ge 16$. (e) $\rho = \infty$.
- 13. Consider the equation x(1-x)y'' + (2+x)y' + y = 0. For which values of r is there sure to be a solution of the form $|x-1|^r \sum_{n=0}^{\infty} a_n(x-1)^n$, with $a_0 \neq 0$?
 - (a) 4 (b) 3 (c) 2 (d) 0 (e) No value of r.
- 14. Which of the following statements about the matrix A are true?

$$A = \begin{bmatrix} 2 & 4 & 2 & -1 & 0 & 2 & -2 \\ 4 & 8 & 4 & -2 & 1 & 7 & -4 \\ 0 & 0 & 0 & 2 & 0 & 4 & 4 \end{bmatrix}$$

- A. The first row of the reduced echelon form of A is $\begin{bmatrix} 1 & 2 & 1 & 0 & 0 & 2 & 0 \end{bmatrix}$.
- B. The system Ax = b, where x is 7×1 and b is 3×1 , has a solution for any choice of b.
- C. The dimension of the column space of A is 3.
- D. The dimension of the solution space of A is 3.
- (a) All except D. (b) All except C. (c) All except B. (d) All except A. (e) All are true.
- 15. If $A = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 2 & 1 \\ 1 & 1 & 0 \end{bmatrix}$, which row of A^{-1} is orthogonal to the other two rows of A^{-1} ?
 - (a) Only the first row. (b) Only the second row. (c) Only the third row. (d) All the rows. (e) None of the rows.
- 16. The vectors $v_1 = (1, 0, 1, 1), v_2 = (2, 1, 1, 4), v_3 = (0, 2, 3, 4)$
 - (a) are linearly independent and do not span \mathbf{R}^4 . (b) are linearly independent and span \mathbf{R}^4 . (c) are linearly dependent and span \mathbf{R}^4 . (e) are linearly independent and span \mathbf{R}^4 . (e) are linearly independent and span a two-dimensional subspace of \mathbf{R}^4 .

17. Let A be an $m \times n$ matrix of rank r. Suppose the row space and the solution space of A have the same dimension, and that Ax = b always has a solution. Then

(a)
$$n = 2m$$
. (b) $n = m$. (c) $n = r = 2m$. (d) $n + r = m$. (e) $n = r = m$.

18. Find |A| if A is the matrix of the linear transformation L defined by

$$L \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 3x_1 + 5x_2 - 2x_3 + 6x_4 \\ x_1 + 2x_2 - x_3 + x_4 \\ 2x_1 + 4x_2 + x_3 + 5x_4 \\ 3x_1 + 7x_2 + 5x_3 + 3x_4 \end{bmatrix}$$

(a)
$$-18$$
 (b) -36 (c) -9 (d) -27 (e) 0

19. In the system below, if the coefficient matrix has determinant 25, find x_1 .

$$\begin{bmatrix} 11 & 0 & 2 & 0 & 3 \\ 2 & 4 & 0 & 5 & 0 \\ -1 & 0 & 7 & 0 & 8 \\ 14 & 9 & 0 & 10 & 0 \\ -12 & 0 & 12 & 0 & 13 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 6 \\ 0 \\ 11 \end{bmatrix}$$

(a) 0 (b)
$$\frac{4}{5}$$
 (c) $-\frac{2}{5}$ (d) $\frac{3}{5}$ (e) $-\frac{1}{5}$

20. Find the entry in the fourth row and second column of A^{-1} if

$$A = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 & 0 \\ 1 & 1 & 2 & 0 & 0 \\ 1 & 1 & 1 & 2 & 0 \\ 1 & 1 & 1 & 1 & 2 \end{bmatrix}.$$

(a)
$$-\frac{1}{8}$$
 (b) 4 (c) 0 (d) $\frac{1}{4}$ (e) $-\frac{1}{16}$

21. Find the polynomial whose roots are the eigenvalues of the matrix $A = \begin{bmatrix} 4 & 0 & 1 \\ 2 & 3 & 2 \\ 1 & 0 & 4 \end{bmatrix}$.

(a)
$$(3-\lambda)^2(5-\lambda)$$
 (b) $(3-\lambda)(5-\lambda)^2$ (c) $(3-\lambda)(4-\lambda)^2$ (d) $(3-\lambda)((4-\lambda)^2+1)$ (e) $15\lambda-8\lambda^2+\lambda^3$

3

Let $A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$. Then A has 2 as an eigenvalue, and -1 as an eigenvalue of multiplicity two. Use **reduced** echelon form to find the eigenvectors of A. For which of the following matrices

P will $P^{-1}AP$ be a diagonal matrix?

(a)
$$P = \begin{bmatrix} -1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$
 (b) $P = \begin{bmatrix} -2 & -1 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ (c) $P = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ (d) $P = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix}$ (e) $P = \begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix}$

(e)
$$P = \begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix}$$

Math 226	: Calc	ulus IV Si	gn you	r Name:					_Final Exam	
May 7, 1998 Name:				Section:					Print your	
ГА:				Do not	turn t	his pag	ge until you are	told to	begin. When	
						. –	ely) and keep e turn in only		-	
Record you	ır answ	ers to the mul-	tiple ch	oice prob	lems b	y plac	$ing an \times throu$	gh one	letter for each	
start with	24 point	ts, and the hig	hest po	ssible sco	re is 15	66. Fill	questions worth in the answers You may use	as you	go along. You	
		tions found on gration, formu					lculators. In pa	articula	r you may not	
1	15nta	15nthin15nta	15ptd	15nto	10	15pto	15nthlein15nta	15ntd	15nto	
1.	тэрца	15ptbip15ptc	тәріш	Topte	12.	тэрта	15ptbkip15ptc	тэрга	тэрсе	
2.	15pta	15ptbip15ptc	15ptd	15pte	13.	15pta	15ptbkip15ptc	15ptd	15pte	
3.	15pta	15ptbip15ptc	15ptd	15pte	14.	15pta	15ptbkip15ptc	15ptd	15pte	
4.	15pta	15ptbip15ptc	15ptd	15pte	15.	15pta	15ptbkip15ptc	15ptd	15pte	
5.	15pta	15ptbip15ptc	15ptd	15pte	16.	15pta	15ptbkip15ptc	15ptd	15pte	
6.	15pta	15ptbip15ptc	15ptd	15pte	17.	15pta	15ptbkip15ptc	15ptd	15pte	
7.	15pta	15ptbip15ptc	15ptd	15pte	18.	15pta	15ptbkip15ptc	15ptd	15pte	
R	15pta	15ptbip15ptc	15ptd	15nte	10	15nta	15ptbkip15ptc	15n+d	15nto	

20. 15pta 15ptbkip15ptc 15ptd 15pte

9. 15pta 15ptbip15ptc 15ptd 15pte

$70\mathrm{pt}$ Answer Key 1

Math 226: Calculus IV Sign your Name:	Final Exam				
May 7, 1998 Name:	Section:				
TA: Do not	turn this page until you are told to begin. When				
	sheet (gently) and keep it under your test exam please turn in only the answer sheet.				
Record your answers to the multiple choice problem	lems by placing an \times through one letter for each				
start with 24 points, and the highest possible scor	tiple choice questions worth 6 points each. You re is 156. Fill in the answers as you go along. You re time is up. You may use a calculator, but only				
the standard functions found on very inexpensive use graphing, integration, formula or program cap	e scientific calculators. In particular you may not pabilities.				
1. 15pt• 15pt b 15ptc 15ptd 15pte	12. 15pt• 15ptb 15ptc 15ptd 15pte				
swerskip 15pt• 15pt b 15pt c 15pt d 15pte	answerskip 15pt• 15pt b 15ptc 15ptd 15pte				
3. 15pt• 15pt b 15ptc 15ptd 15pte	swerskip 15pt• 15pt b 15ptc 15ptd 15pte				
swerski þ 15pt • 15pt b 15ptc 15ptd 15pte	15. 15pt• 15ptb 15ptc 15ptd 15pte				
5. 15pt• 15pt b 15ptc 15ptd 15pte	answerslij 15pt• 15pt b 15ptc 15ptd 15pte				
swersk f p 15pt • 15pt b 15ptc 15ptd 15pte	swerskip 15pt• 15pt b 15ptc 15ptd 15pte				
7. 15pt• 15pt b 15ptc 15ptd 15pte	18. 15pt• 15ptb 15ptc 15ptd 15pte				
swersk \mathfrak{P} 15pt \bullet 15ptb 15ptc 15ptd 15pte	19. 15pt• box15ptb 15ptc 15ptd 15pte				
9. 15pt• 15pt b 15ptc 15ptd 15pte	20. 15pt• 15ptb 15ptc 15ptd 15pte				

answers**½i**p 15pt• 15pt b 15ptc

15ptd 15pte

swerskip 15pt• 15pt b 15ptc 15ptd