1. Let $y(t)$ be a solution of the equation $t^{2} y^{\prime}-y=-1$ defined for $t>0$. Find $\lim _{t \rightarrow 0^{+}} y(t)$.
(a) 1 (b) 0 (c) ∞ (d) -1 (e) It can be different for different solutions.
2. Classify the stable equilibrium points for the equation

$$
\frac{d N}{d t}=\left|\begin{array}{ccc}
N^{2} & 0 & 2 N-2 \\
0 & 1 & 0 \\
2 N-2 & 0 & (N-1)^{2}
\end{array}\right| .
$$

(a) One stable, one unstable, and one semistable. (b) Two stable, one unstable, and none semistable.
(c) One stable, two unstable and none semistable. (d) Two stable and two semistable. (e) Two unstable and two semistable.
3. For what value of the constant b will the following differential equation be exact?

$$
\left(y e^{3 x y}-x\right) d x+b x e^{3 x y} d y=0
$$

(a) 1 (b) 3 (c) -1
(d) 0 (e) No value of b.
4. The water bath surrounding a certain nuclear reactor contains radioactive material that decays with a half-life of 5 days. New radioactive material is added to the bath at the constant rate of 1 gram per day. Assume the bath contains no radioactive material initially. Find an expression for the amount $Q(t)$ of grams of radioactive material after t days.
(a) $Q(t)=\frac{5}{\ln 2}\left(1-\left(\frac{1}{2}\right)^{\frac{t}{5}}\right)$ (b) $Q(t)=\frac{5}{\ln 2}\left(\left(\frac{1}{2}\right)^{\frac{t}{5}}-1\right)$ (c) $Q(t)=5 \ln 2\left(\left(\frac{1}{2}\right)^{\frac{t}{5}}-1\right)$ (d) $Q(t)=5 \ln 2(1-$ $\left.\left(\frac{1}{2}\right)^{\frac{t}{5}}\right)(\mathrm{e}) Q(t)=\left(1-\left(\frac{1}{2}\right)^{\frac{t}{5}}\right)$
5. The equation $\quad y^{\prime}=\frac{x^{2}-14 x y+3 y^{2}}{7 x^{2}+y^{2}}-1 \quad$ is
(a) homogeneous. (b) linear. (c) separable but not exact. (d) exact with a suitable choice of integrating factor. (e) none of the others.
6. A particular solution of $y^{\prime \prime}+y=t \cos t$ has the form
(a) $\left(A t^{2}+B t\right) \cos t+\left(C t^{2}+D t\right) \sin t$. (b) $(A t+B) \cos t+(C t+D) \sin t$. (c) $(A t+B) \cos t+(A t+B) \sin t$. (d) $A t^{2} \cos t+B t^{2} \sin t$. (e) $(A t+B) \cos t$
7. The general solution of the equation $y^{\prime \prime}+y=\csc t$, for $0<t<\pi$ is
(a) $c_{1} \cos t+c_{2} \sin t-t \cos t+(\sin t) \ln \sin t$. (b) $c_{1} \sin t+c_{2} \cos t+t \sin t-(\cos t) \ln \sin t$. (c) $c_{1} e^{t} \sec t+$ $c_{2} e^{t} \csc t$. (d) $c_{1} t \sin t+c_{2}(\cos t) \ln \sin t$. (e) $\left(c_{1}+t\right) \cos t+\left(c_{2}+\ln \cos t\right) \sin t$.
8. Find $\quad y(1) \quad$ if $\quad y^{\prime \prime}+4 y^{\prime}+5 y=0, \quad y(0)=1, \quad y^{\prime}(0)=0$.
(a) 0.301
(b) 0.187 (c) 0.241
(d) 0.282 (e) 0.666
9. For $x>0$ the Wronskian of two independent solutions of the Euler equation $x^{2} y^{\prime \prime}+x y^{\prime}-y=0$ is a constant multiple of
(a) $\frac{1}{x}$. (b) x.
(c) $\frac{1}{x^{2}}$.
(d) x^{2}.
(e) 1 .
10. Find $\quad y(1)$ if $y(t)$ is the solution of the initial value problem

$$
y^{\prime \prime}-y^{\prime}=-2 t, \quad y(0)=0, \quad y^{\prime}(0)=2
$$

(a) 3 (b) $4+e$ (c) 4 (d) $e+2$ (e) 1
11. Find the first three nonzero terms of a power series solution to the initial value problem

$$
\left(1-x^{2}\right) y^{\prime \prime}+3 y=0, \quad y(0)=0, \quad y^{\prime}(0)=1
$$

(a) $x-\frac{1}{2} x^{3}-\frac{3}{40} x^{5}$ (b) $1+\frac{1}{2} x^{3}-\frac{3}{8} x^{5}$ (c) $x-\frac{1}{2} x^{3}+\frac{3}{20} x^{5}$ (d) $1+x+\frac{1}{3} x^{3}$ (e) $x-\frac{1}{6} x^{3}-\frac{1}{40} x^{5}$
12. The equation $\quad\left(x^{2}+16\right) y^{\prime \prime}+3 y^{\prime}-4 x^{2} y=0 \quad$ has a series solution in powers of $x-3$. From the general theory, its radius of convergence ρ must satisfy
(a) $\rho \geq 5$. (b) $\rho \geq 4$. (c) $\rho \geq 3$. (d) $\rho \geq 16$. (e) $\rho=\infty$.
13. Consider the equation $x(1-x) y^{\prime \prime}+(2+x) y^{\prime}+y=0$. For which values of r is there sure to be a solution of the form $|x-1|^{r} \sum_{n=0}^{\infty} a_{n}(x-1)^{n}, \quad$ with $\quad a_{0} \neq 0 ?$
(a) 4 (b) 3 (c) 2 (d) 0 (e) No value of r.
14. Which of the following statements about the matrix A are true?

$$
A=\left[\begin{array}{rrrrrrr}
2 & 4 & 2 & -1 & 0 & 2 & -2 \\
4 & 8 & 4 & -2 & 1 & 7 & -4 \\
0 & 0 & 0 & 2 & 0 & 4 & 4
\end{array}\right]
$$

A. The first row of the reduced echelon form of A is $\left[\begin{array}{lllllll}1 & 2 & 1 & 0 & 0 & 2 & 0\end{array}\right]$.
B. The system $A x=b$, where x is 7×1 and b is 3×1, has a solution for any choice of b.
C. The dimension of the column space of A is 3 .
D. The dimension of the solution space of A is 3 .
(a) All except D. (b) All except C. (c) All except B. (d) All except A. (e) All are true.
15. If $A=\left[\begin{array}{rrr}1 & -1 & 0 \\ 0 & 2 & 1 \\ 1 & 1 & 0\end{array}\right], \quad$ which row of A^{-1} is orthogonal to the other two rows of A^{-1} ?
(a) Only the first row. (b) Only the second row. (c) Only the third row. (d) All the rows. (e) None of the rows.
16. The vectors $\quad v_{1}=(1,0,1,1), \quad v_{2}=(2,1,1,4), \quad v_{3}=(0,2,3,4)$
(a) are linearly independent and do not span \mathbf{R}^{4}. (b) are linearly independent and span \mathbf{R}^{4}. (c) are linearly dependent and do not span \mathbf{R}^{4}. (d) are linearly dependent and span \mathbf{R}^{4}. (e) are linearly independent and span a two-dimensional subspace of \mathbf{R}^{4}.
17. Let A be an $m \times n$ matrix of rank r. Suppose the row space and the solution space of A have the same dimension, and that $A x=b$ always has a solution. Then
(a) $n=2 m$. (b) $n=m$. (c) $n=r=2 m$. (d) $n+r=m$. (e) $n=r=m$.
18. Find $\quad|A|$ if A is the matrix of the linear transformation L defined by

$$
L\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
3 x_{1}+5 x_{2}-2 x_{3}+6 x_{4} \\
x_{1}+2 x_{2}-x_{3}+x_{4} \\
2 x_{1}+4 x_{2}+x_{3}+5 x_{4} \\
3 x_{1}+7 x_{2}+5 x_{3}+3 x_{4}
\end{array}\right]
$$

(a) -18 (b) -36 (c) -9 (d) -27 (e) 0
19. In the system below, if the coefficient matrix has determinant 25 , find x_{1}.

$$
\left[\begin{array}{rcccc}
11 & 0 & 2 & 0 & 3 \\
2 & 4 & 0 & 5 & 0 \\
-1 & 0 & 7 & 0 & 8 \\
14 & 9 & 0 & 10 & 0 \\
-12 & 0 & 12 & 0 & 13
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
1 \\
0 \\
6 \\
0 \\
11
\end{array}\right]
$$

(a) 0 (b) $\frac{4}{5}$ (c) $-\frac{2}{5}$ (d) $\frac{3}{5}$ (e) $-\frac{1}{5}$
20. Find the entry in the fourth row and second column of A^{-1} if

$$
A=\left[\begin{array}{lllll}
2 & 0 & 0 & 0 & 0 \\
1 & 2 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 \\
1 & 1 & 1 & 2 & 0 \\
1 & 1 & 1 & 1 & 2
\end{array}\right]
$$

(a) $-\frac{1}{8}$ (b) 4 (c) 0 (d) $\frac{1}{4}$ (e) $-\frac{1}{16}$
21. Find the polynomial whose roots are the eigenvalues of the matrix $A=\left[\begin{array}{lll}4 & 0 & 1 \\ 2 & 3 & 2 \\ 1 & 0 & 4\end{array}\right]$.
(a) $(3-\lambda)^{2}(5-\lambda)(b)(3-\lambda)(5-\lambda)^{2}$ (c) $(3-\lambda)(4-\lambda)^{2}(d)(3-\lambda)\left((4-\lambda)^{2}+1\right)(e) 15 \lambda-8 \lambda^{2}+\lambda^{3}$
22. Let $A=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$. Then A has 2 as an eigenvalue, and -1 as an eigenvalue of multiplicity two. Use reduced echelon form to find the eigenvectors of A. For which of the following matrices P will $P^{-1} A P$ be a diagonal matrix?
(a) $P=\left[\begin{array}{rrr}-1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right]$
(b) $P=\left[\begin{array}{rrr}-2 & -1 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$
(c) $P=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right]$
(d) $P=\left[\begin{array}{rrr}1 & -1 & 1 \\ -1 & 0 & -1 \\ 0 & 1 & 1\end{array}\right]$
(e) $P=\left[\begin{array}{rrr}-1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 2 & 1\end{array}\right]$

May 7, 1998
Name:
\qquad Section:

Print your

TA: \qquad Do not turn this page until you are told to begin. When
you are told to begin, tear off the answer sheet (gently) and keep it under your test while you are working. At the end of the exam please turn in only the answer sheet.

Record your answers to the multiple choice problems by placing an \times through one letter for each
problem on this answer sheet. There are 22 multiple choice questions worth 6 points each. You start with 24 points, and the highest possible score is 156 . Fill in the answers as you go along. You will not be allowed to fill in the answers after the time is up. You may use a calculator, but only the standard functions found on very inexpensive scientific calculators. In particular you may not use graphing, integration, formula or program capabilities.

1. 15 pta 15 ptbip 15 ptc 15 ptd 15 pte
2. 15 pta 15 ptbip 15 ptc 15 ptd 15 pte
3. 15 pta 15 ptbip 15 ptc 15 ptd 15 pte
4. 15 pta 15 ptbip 15 ptc 15 ptd 15 pte
5. 15pta 15ptbip15ptc 15ptd 15pte
6. 15pta 15 ptbip 15 ptc 15 ptd 15 pte
7. 15pta 15ptbip15ptc 15ptd 15pte
8. 15 pta 15 ptbip 15 ptc 15 ptd 15 pte
9. 15pta 15ptbip15ptc 15ptd 15pte
10. 15 pta 15 ptbkip 15 ptc 15 ptd 15 pte
11. 15pta 15ptbkip15ptc 15ptd 15pte
12. 15pta 15ptbkip15ptc 15ptd 15pte
13. 15pta 15ptbkip15ptc 15 ptd 15 pte
14. 15pta 15ptbkip15ptc 15ptd 15pte
15. 15pta 15ptbkip15ptc 15ptd 15pte
16. 15pta 15ptbkip15ptc 15ptd 15pte
17. 15pta 15ptbkip15ptc 15ptd 15pte
18. 15pta 15 ptbkip 15 ptc 15 ptd 15 pte

Name: \qquad Section: \qquad
TA: \qquad Do not turn this page until you are told to begin. When
you are told to begin, tear off the answer sheet (gently) and keep it under your test while you are working. At the end of the exam please turn in only the answer sheet.

Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this answer sheet. There are 22 multiple choice questions worth 6 points each. You start with 24 points, and the highest possible score is 156 . Fill in the answers as you go along. You will not be allowed to fill in the answers after the time is up. You may use a calculator, but only
the standard functions found on very inexpensive scientific calculators. In particular you may not use graphing, integration, formula or program capabilities.

1. 15 pt - 15 pt b 15 ptc 15 ptd 15 pte	12. 15 pt - 15 p tb 15 ptc 15 ptd 15 pte
swerskゆ 15pt• 15pt b 15ptc 15ptd 15pte	answerstio 15 pt • 15 pt b 15 ptc 15ptd 15pte
3. 15pt- 15pt b 15ptc 15ptd 15pte	swerslịi 15pt• 15pt b 15ptc 15ptd 15pte
swerskii 15 pt • 15ptb 15 ptc 15 ptd 15pte	15. 15 pt - 15 p tb 15 ptc 15 ptd 15 pte
5. 15pt• 15pt b 15ptc 15ptd 15pte	answersliti 15pt• 15pt b 15ptc 15ptd 15pte
swerskị 15pt• 15pt b 15ptc 15ptd 15pte	swerskip 15pt• 15pt b 15ptc 15ptd 15pte
7. 15pt• 15pt b 15ptc 15ptd 15pte	18. 15 pt - 15 p tb 15 ptc 15 ptd 15 pte
swerskip 15pt• 15ptb 15ptc 15ptd 15pte	19. $15 \mathrm{pt} \bullet$ box 15 ptb 15 ptc 15 ptd 15 pte
9. 15 pt - 15 pt b 15 ptc 15 ptd 15 pte	20. 15 pt - 15 p tb 15 ptc 15 ptd 15 pte
swersHtp 15pt• 15pt b 15ptc 15ptd 15pte	15ptd 15pte

