Math 228, Test 2

B. Hall and R. Smarandache

October 24, 2000

Instructions: You have one hour for the exam. There are 11 problems, worth 9 points each, with one free point, for a total of 100 points possible. For multiple-choice problems, please mark your answer clearly. For all other problems, please show your work completely. Partial credit will be given for all non-multiple-choice problems. Calculators, notes, and books are prohibited. This exam is bound by the provisions of the Notre Dame Honor Code.

Name:

1. Do the vectors $v_1 = (1, 2, 0)$, $v_2 = (0, 1, 2)$ and $v_3 = (1, 1, 1)$ constitute a basis for \mathbb{R}^3 ? Show your work and explain clearly why or why not.

2. Let u and v be two vectors in \mathbb{R}^n with $\|u=5$ and $\|v\|=6$. What is the largest possible value for $|u\cdot v|$? What is the largest possible value for $\|u+v\|$? Explain your reasoning.

- 3. Suppose $S = \{v_1, v_2, v_3\}$ is a linearly dependent set of vectors in \mathbb{R}^3 . Which of the following statements are necessarily true?
 - (I) The span of S is a plane through the origin
 - (II) The dimension of the span of S is at most 2
 - (III) The span of S cannot be all of \mathbb{R}^3
 - a) None of them b) I and II only c) I only d) II and III only e) I, II, and III

4. Let A be the matrix

```
A=(
[c]rrrr
1 2 1 0
3 0 1 2
1 -4 -1 2
```

Find a basis for $RS\left(A\right)$, a basis for $NS\left(A\right)$, and a basis for $CS\left(A\right)$. State the dimensions of $RS\left(A\right)$, $RS\left(A\right)$, and $RS\left(A\right)$.

- 5. Suppose U is a matrix in row-echelon form obtained from a matrix A by means of row operations. Which of the following statements are necessarily true?
 - (I) NS(A) = NS(U)
 - (II) RS(A) = RS(U)
 - (III) CS(A) = CS(U)
 - $(\mathrm{IV})\ rk\left(A\right) = rk\left(U\right)$
 - (V) $\dim CS(A) = \dim CS(U)$
 - a) All of them b) IV and V only c) I, II, and IV only
 - $d)I, II, IV, and Vonly \quad e) I and II \ only$

- 6. Below are several examples of a vector space V and a subset S of V. In each case state whether or not S is a subspace of V. If S is not a subspace of V, explain why not.
 - a) $V = C[0, 5], S = \{f \in V | f(0)\}$

=3

- b) $V = M_{33}$, $S = \{A | A \text{ is invertible}\}$
- c) $V = \mathbb{R}^3$, $S = \{(0, t, 2t) \mid$

 $t{\in \mathbb{R}}$

d) $V = C[a, b], S = \{f \in V | f(x)\}$

 ≤ 0 for all x

7. Determine whether the following polynomials constitute a basis for \mathcal{P}_2 :

$$p_1\left(x\right) = 1$$

$$p_2(x) = 1 + x$$

$$p_3(x) = 1 + x + x^2$$
.

If they do, find the coordinates of $f(x) = 3 + 4x + 5x^2$ with respect to this basis.

8. Consider the vectors u₁ = (1,1,0,0), u₂ = (
1,0,2,1 and u₃ = (1,2,-2,-1) in R⁴.
What is the dimension of the span of {u₁, u₂, u₃}?
Show your work and explain your reasoning clearly. Hint: are the vectors linearly independent?

9. Determine whether each of the following collections of vectors in linearly independent. Explain your reasoning in each case.

a)
$$u_1 = \left(2, \frac{3}{2}, 50, \frac{5}{3}\right), u_2 = ($$

 $23, 5_{\overline{6,105,30}}, u_3 = \left(\frac{3}{7}, 0, 22, -11\right)$
 $u_4 = (22, 0, 0, 9), u_5 = (1, 1, 1, 0, -99) \text{ in } \mathbb{R}^4$
b) $w_1 = (1, 2, 5, 6, 7), w_2 = (7, 6, 5, 2, 1),$
 $w_3 = (0, 0, 0, 0, 0, 0) \text{ in } \mathbb{R}^5$

10. Consider the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ given by

$$T(x, y, z) = (3x - z, 2y + z).$$

Find the matrix that represents T. (That is, find the matrix A such that $f_A = T$.)

11. Suppose that A is a 3×4 matrix and that $\dim NS$ (

A= 1. Which of the following statements are necessarily true?

- (I) The rows of A are linearly independent
- (II) The columns of A are linearly dependent
- (III) The row echelon form of A has a row of all zeros
- (IV) The rank of A is one
- a) None of them b) All of them c) I and II only d) I, II, and III only e) II only