Math 228, Test 3

B. Hall and R. Smarandache

November 16, 2000

Instructions: You have one hour for the exam. There are 10 problems, worth 10 points each for a total of 100 points possible. For multiple-choice problems, please mark your answer clearly. For all other problems, please show your work completely. Partial credit will be given for all non-multiple-choice problems.

Calculators, notes, and books are prohibited.

This exam is bound by the provisions of the Notre Dame Honor Code.

Name:

1. Apply the Gram-Schmidt procedure to the vectors $v_1 = (1,0,0,\,v_2=(1,2,-1)\,,\,v_3=(0,1,1)$ toobtainanorthonormalsetofvectors $\mathbf{u}_1,\,u_2,\,u_3$.

2. Find all the eigenvalues and eigenvectors of the matrix

A=[c]rr
3 1
-1 1

Is A diagonalizable? Explain clearly why or why not.

- 3. Suppose that Q is an $n \times n$ orthogonal matrix. Which of the following statements are always true?
 - (I) $Q^{-1} = Q^T$
 - (II) The rows of Q are orthogonal
 - (III) Q^{-1} is orthogonal
 - (a) None of them (b) I only (c) I and II only (d) I and III only
 - (e) I, II, and III
- 4. Set up but do not solve the normal equations for finding the best fit line to the points (-1,0), (0,0),
 - (1,2), (2,2). ("Best fit" means in the

least squares sense.) You do not have to compute the product of the matrices involved.

5. Consider the matrix

A=[
[c]ccc
2 1 1

1 2 1

1 1 2

.

Find an orthonormal basis for \mathbb{R}^3 consisting of eigenvectors for A.

Hint: The characteristic polynomial of A is $(4 - \lambda)$

 $(\lambda-1)^2$.

6. Suppose that A is the 2×2 matrix given by

 $\mathbf{A}{=}\mathbf{S}\Lambda S^{-1}$

where

S=[

[c]rr

1 2

0 -1

and

 $\Lambda = [$

[c]cc

2 0

0 0

.

Compute A^6 .

7. Let Q be an orthogonal $n \times n$ matrix, and let $A = Q^3$. Is A necessarily orthogonal? Explain why or why not. Hint: Compute A^TA .

8. Let A be the matrix

$$A=[\\[1mm] [c]ccc\\ 1_{\overline{\sqrt{2}}\frac{1}{\sqrt{3}}\frac{1}{\sqrt{6}}}\\ 0_{1}_{\overline{\sqrt{3}}-\frac{2}{\sqrt{6}}}\\ -1_{\overline{\sqrt{2}}\frac{1}{\sqrt{3}}\frac{1}{\sqrt{6}}}$$

- a) Show that A is orthogonal.
- b) Compute A^{-1} .

- 9. Let A be an $n \times n$ matrix. For each of the following statements, circle "True" if the statement is necessarily true, and "False" if the statement could be false.
 - (I) (True or False) If A is diagonalizable, then A has n distinct eigenvalues.
 - (II) (True or False) If A is invertible then zero is not an eigenvalue of A.
 - (III) (True or False) If zero is not an eigenvalue of A then A is invertible.
 - (IV) (True or False) If A is symmetric then A has n distinct eigenvalues.
 - (V) (True or False) If A is symmetric then A is diagonalizable.

- 10. a) Suppose that A is a 2×2 symmetric matrix whose characteristic polynomial is $\lambda^2-2\lambda+1.$ Show that A=I.
 - b) Give an example of a 2×2 matrix B whose characteristic polynomial is $\lambda^2-2\lambda+1$ but such that $B\neq I$.