MATH 228: Intro to Lin Alg and Diff EqnsName:

Exam II March 19, 2002

Instructor:_

Record your answers to the multiple choice problems by placing an × through one letter for each problem on this page. There are 10 multiple choice questions worth 5 points each and 3 partial credits problems worth 10 points each. You start with 20 points. On the partial credit problems you must show your work and all important steps to receive credit.

Let $\mathbf{v}_1 = (1, 1, 0)$, $\mathbf{v}_2 = (1, 0, 1)$, $\mathbf{v}_3 = (-1, c, -3)$. Find a value of c such that \mathbf{v}_1 , \mathbf{v}_2 and \mathbf{v}_3 are linearly dependent.

$$2\ 0\ -2\ 1\ -3$$

Determine which of the following sets of polynomials forms a basis of P_2 , the vector space of all polynomials of degree less than or equal to 2.

2 3 4 1 5

Determine the rank of the matrix
$$A = \begin{bmatrix} 2 & 6 & -1 & 1 \\ -1 & -3 & 1 & 0 \\ -3 & -9 & 2 & -1 \\ 4 & 12 & -2 & 2 \end{bmatrix}$$
.

20134

Determine which of the following sets are vector spaces with usual addition and scalar multiplication.

- (I) Set of all continuous functions f on [0,1] with f(0)=0 and f(1)=1.
- (II) Set of all 2×2 matrices of the form $\begin{bmatrix} 0 & a \\ b & c \end{bmatrix}$ where a, b, c are arbitrary real numbers. (III) Set of all 2×2 matrices of the form $\begin{bmatrix} a & 1 \\ 0 & b \end{bmatrix}$ where a, b are arbitrary real numbers.
- (IV) Set of all polynomials $p(x) = a_0 + a_1x + a_2x^2$ with $a_0 + a_2 = 0$.
- (V) Set of all 2×2 matrices A with det A = 0.
- (II) and (IV) (I) and (II) (IV) and (V) (I) and (III) (II), (IV) and (V)

Find the coordinates, $[\mathbf{x}]_B$ of the vector $\mathbf{x} = (1,0,-1)$ with respect to the basis B =

$$\{(1,-1,0),(-1,1,-1),(0,-1,1)\}. \begin{bmatrix} 1\\0\\-1\end{bmatrix} \begin{bmatrix} 1\\1\\-1\end{bmatrix} \begin{bmatrix} 2\\-1\\0\end{bmatrix} \begin{bmatrix} 1\\0\\-2\end{bmatrix} \begin{bmatrix} 1\\-1\\-1\end{bmatrix}$$

Suppose $B = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ and $C = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ are bases of a vector space V related by

$$\mathbf{u}_1 = \mathbf{v}_1 - \mathbf{v}_3$$

$$\mathbf{u}_2 = \mathbf{v}_2 - \mathbf{v}_3$$

$$\mathbf{u}_3 = \mathbf{v}_1 - \mathbf{v}_2$$

If
$$[x]_B = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$$
, find $[x]_C$.

$$\begin{bmatrix} 4 \\ -1 \\ -3 \end{bmatrix} \begin{bmatrix} -2 \\ -1 \\ -1 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix} \begin{bmatrix} -1 \\ 4 \\ 2 \end{bmatrix} \begin{bmatrix} 3 \\ -1 \\ -2 \end{bmatrix}$$

The Gram-Schmidt process is applied to the following basis of \mathbb{R}^3 :

$$\mathbf{v}_1 = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -2 \\ 1 \\ 2 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 18 \\ 0 \\ 0 \end{bmatrix}$$

resulting in the orthonormal vectors

$$\mathbf{q}_1 = \begin{bmatrix} 2/3 \\ 2/3 \\ 1/3 \end{bmatrix}, \quad \mathbf{q}_2 = \begin{bmatrix} -2/3 \\ 1/3 \\ 2/3 \end{bmatrix}, \quad \mathbf{q}_3$$

Find \mathbf{q}_3

$$\begin{bmatrix} 1/3 \\ -2/3 \\ 2/3 \end{bmatrix} \begin{bmatrix} 1/3 \\ 2/3 \\ 2/3 \end{bmatrix} \begin{bmatrix} 2/3 \\ 1/3 \\ 2/3 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1/3 \\ 2/3 \\ -1/3 \end{bmatrix}$$

Let V = C[0,1] be the vector space of continuous functions on [0,1] with inner product defined by $f \cdot g = \int_0^1 f(x)g(x) dx$. Let f(x) = -6x + 2. Find the number a such that g(x) = x + a is orthogonal to f.

$$-10 -321/3$$

Find
$$R$$
 in the QR -decomposition of the matrix $A = \begin{bmatrix} 4 & 25 \\ 0 & 0 \\ 3 & -25 \end{bmatrix}$. $\begin{bmatrix} 5 & 5 \\ 0 & 35 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 15 & 35 \end{bmatrix}$

$$\begin{bmatrix} 25 & 0 \\ 0 & 25 \end{bmatrix} \begin{bmatrix} 4 & 3 \\ 0 & 25 \end{bmatrix} \begin{bmatrix} 12 & -4 \\ 0 & 25 \end{bmatrix}$$

11. Find a basis for the null space, NS(A), of the matrix $A = \begin{bmatrix} 1 & -1 & 1 & 1 \\ 2 & -1 & 2 & 1 \\ -1 & 0 & -1 & 0 \\ 3 & -2 & 3 & 2 \end{bmatrix}$.

12. Define $T:C[0,1]\to C[0,1]$ as follows: If f is a continuous function on [0,1], then T(f) is the continuous function of x defined by $\int_0^x tf(t)\,dt$ for $0\le x\le 1$. For example, if f is the function $f(x)=x^2$, then T(f) is the function $\int_0^x t\cdot t^2\,dt=x^4/4$. Determine whether T is a linear transformation. Be sure to justify the statements leading to your conclusion.

13. Let
$$A=\begin{bmatrix}2&3&6\\6&2&-3\\3&-6&2\end{bmatrix}$$
. (a) Find a scalar c so that cA is an orthogonal matrix.

(b) Use your answer in part (a) to find A^{-1} .