MATH 228: Intro to Lin Alg and Diff Eqns

Name:____

Final Exam May 7, 2002

Instructor:_____

0.5truein Record your answers by placing an \times through one letter for each problem on this page. There are 20 questions worth 6 points each. You start with 30 points.

You may *not* use a calculator.

Determine which of the following matrices gives U in an LU decomposition of $\begin{bmatrix} 1 & 2 & 0 & 4 \\ 1 & 0 & 2 & 4 \\ 0 & 1 & 2 & 4 \end{bmatrix}$.

$$\begin{bmatrix} 1 & 2 & 0 & 4 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 & 4 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 & 4 \\ 0 & 0 & 1 & -2 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 & 4 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 & 4 \\ 0 & 1 & 2 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 1 \\ 0 & -1 \\ 1 & 0 \end{bmatrix}$. Find $A \cdot B$.

$$\begin{bmatrix} 4 & -1 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} 2 & 2 & 4 \\ 4 & 1 & 1 \end{bmatrix} \begin{bmatrix} 4 & 4 & 4 \\ -3 & -2 & -1 \\ 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 4 & 2 \\ 2 & 1 \\ 2 & 3 \end{bmatrix}$$

Let
$$A = \begin{bmatrix} 3 & 2 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
. Find A^{-1} .

$$\begin{bmatrix} 1 & -2 & 0 \\ -1 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1/3 & 1/2 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 3 & -2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/3 & -1/2 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1/3 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Compute the determinant of $\begin{bmatrix} 4 & 0 & 3 \\ 2 & 2 & -1 \\ 5 & 0 & 6 \end{bmatrix}$.

18 48 8 -30 60

Let
$$A = \begin{bmatrix} 6 & 3 & 2 \\ 3 & 2 & 1 \\ 2 & 1 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 \\ 3 \\ 6 \end{bmatrix}$. If $X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ is a solution of $A \cdot X = B$, determine which

of the following gives x_1 .

$$x_{1} = \frac{\det \begin{bmatrix} 1 & 3 & 2 \\ 3 & 2 & 1 \\ 6 & 1 & 0 \end{bmatrix}}{\det \begin{bmatrix} 6 & 3 & 2 \\ 3 & 2 & 1 \\ 2 & 1 & 0 \end{bmatrix}} x_{1} = \frac{\det \begin{bmatrix} 1 & 3 & 2 \\ 3 & 2 & 1 \\ 6 & 1 & 0 \end{bmatrix}}{\det \begin{bmatrix} 1 & 6 & 3 \\ 3 & 3 & 2 \\ 6 & 1 & 0 \end{bmatrix}} x_{1} = \frac{\det \begin{bmatrix} 6 & 3 & 2 \\ 3 & 2 & 1 \\ 2 & 1 & 0 \end{bmatrix}}{\det \begin{bmatrix} 1 & 3 & 2 \\ 3 & 2 & 1 \\ 6 & 1 & 0 \end{bmatrix}} x_{1} = \frac{\det \begin{bmatrix} 1 & 6 & 3 \\ 3 & 3 & 2 \\ 6 & 2 & 1 \end{bmatrix}}{\det \begin{bmatrix} 1 & 3 & 2 \\ 3 & 2 & 1 \\ 6 & 1 & 0 \end{bmatrix}} x_{1} = \frac{\det \begin{bmatrix} 1 & 6 & 3 \\ 3 & 3 & 2 \\ 6 & 2 & 1 \end{bmatrix}}{\det \begin{bmatrix} 1 & 3 & 2 \\ 3 & 2 & 1 \\ 6 & 1 & 0 \end{bmatrix}}$$

$$\frac{\det \begin{bmatrix} 0 & 3 & 1 \\ 3 & 2 & 3 \\ 2 & 1 & 6 \end{bmatrix}}{\det \begin{bmatrix} 6 & 3 & 1 \\ 3 & 2 & 3 \\ 2 & 1 & 3 \end{bmatrix}}$$

Determine which of the following matrices gives R in the QR decomposition of $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$.

$$\begin{bmatrix} \sqrt{2} & 0 & 1/\sqrt{2} \\ 0 & \sqrt{2} & 1/\sqrt{2} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \sqrt{2} & 0 & 1/\sqrt{3} \\ 0 & \sqrt{2} & 2/\sqrt{3} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \sqrt{2} & 0 & -1/\sqrt{6} \\ 0 & \sqrt{2} & 1/\sqrt{6} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \sqrt{2} & 0 & 1/\sqrt{3} \\ 0 & \sqrt{2} & 1/\sqrt{3} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \sqrt{2} & 1/\sqrt{2} & 1/\sqrt{2} \\ 0 & \sqrt{2} & 1/\sqrt{2} \\ 0 & 0 & 1/\sqrt{2} \end{bmatrix}$$

Determine which of the following statements is not equivalent to A being an $n \times n$ orthogonal matrix.

 $A\mathbf{v}$ is orthogonal to \mathbf{v} for all vectors \mathbf{v} in \mathbb{R}^n . The column vectors of A are orthonormal. The row vectors of A are orthonormal. $A^{-1} = A^T ||A\mathbf{v}|| = ||\mathbf{v}||$ for all vectors \mathbf{v} in \mathbb{R}^n .

A matrix A has eigenvectors $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$, $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$, and $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ with corresponding eigenvalues 2, -1, and

$$\begin{bmatrix} 2 & -3 & -1 \\ 0 & -1 & -1 \\ 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 & -2 \\ 0 & -1 & -2 \\ 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} 2 & -3 & 1 \\ 0 & -1 & 1 \\ 0 & 0 & -2 \end{bmatrix}$$
Find a basis for the null space of
$$\begin{bmatrix} 1 & 2 & -1 & 0 \\ -3 & -4 & 1 & -4 \\ 2 & 5 & -3 & -2 \end{bmatrix}.$$

$$\left\{ \begin{bmatrix} -1 \\ 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -4 \\ 2 \\ 0 \\ 1 \end{bmatrix} \right\} \left\{ \begin{bmatrix} 1 \\ 2 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -1 \\ -2 \end{bmatrix} \right\} \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -2 \\ 0 \end{bmatrix} \right\} \left\{ \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ -4 \\ 5 \end{bmatrix} \right\} \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix},$$

Let $W = \text{Span}\{1 + x + x^2, 2 + 3x + 3x^2 + x^3, 1 - x^3, x + x^2 + x^3\}$. Find the dimension of W.

2 1 3 4 5 Let $B = \left\{ \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ be a basis for the vector space of 2×2 matrices

and let $v = \begin{bmatrix} 2 & -1 \\ 5 & 3 \end{bmatrix}$. Find $[v]_B$, the coordinates of v with respect to the basis B.

$$\begin{bmatrix} 2 \\ -1 \\ 3 \\ 4 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \\ -1 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ 5 \\ 3 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \\ -1 \\ 3 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

Let A be a 3×3 matrix whose null space is spanned by $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$. Determine which of the following

statements is true.

 $\operatorname{rank} A = 2 \det A \neq 0$ A is invertible. $\operatorname{rank} A = 1$ A must be symmetric.

Suppose that y_1 and y_2 are solutions of $ty'' - y' + e^{t^2}y = 0$ and their Wronskian satisfies $W(y_1, y_2)(1) = 1$. Find $W(y_1, y_2)(t)$.

 $t e^{t^2} 1/t e^{1-t}$ cannot be determined

Solve the initial value problem 2y'' - 12y' + 18y = 0, y(0) = 1, y'(0) = 2.

$$y = (1-t)e^{3t}$$
 $y = e^{3t}$ $y = e^{3t} - t$ $y = e^{-3t} + 5te^{-3t}$ $y = e^{t}\cos(3t) + e^{t}\sin(3t)$

Find the general solution of y'' - 4y' + 13y = 0.

 $c_1 e^{2t} \cos(3t) + c_2 e^{2t} \sin(3t) \ c_1 e^{3t} \cos(2t) + c_2 e^{3t} \sin(2t) \ c_1 \cos(2t) + c_2 \sin(2t) \ c_1 e^{2t} + c_2 e^{-2t} \ c_1 e^{5t} + c_2 e^{-2t} \cos(2t) + c_3 \cos(2t) + c_4 \cos(2t) + c_5 \cos(2t) +$ $c_2 e^{-t}$

Find the solution to the initial value problem $y^2y' + xy^3 + x = 0$, y(2) = 1. $(2e^{6-3x^2/2}-1)^{1/3}e^{-2+x^2/2}(2e^{6-3x^2/2})^{1/3}-1(e^{-3x^2/2}-1)^{1/3}e^{2-x^2/2}$

Determine which of the following functions is an integrating factor for the equation $x dx + (x^{2} + e^{y^{2}}) dy = 0.$ $e^{2y} 2y e^{-2x} \frac{1}{x} x e^{2y}$

A tank initially contains 100 liters of pure water. A mixture containing a concentration of 2 grams per liter of salt enters the tank at a rate of 3 liters per minute, and the well-stirred mixture leaves the tank at the same rate. Find the amount of salt, in grams, in the tank after t minutes. $200 - 200e^{-0.03t} e^{6t} - 1 6t 100e^{-6t} - 100 200e^{0.03t} - 200$

Find the form of a particular solution of $y'' + 2y' + y = e^{-t}(\sin(t) + t)$.

$$y_{p} = e^{-t} (A \sin(t) + B \cos(t) + Ct^{2} + Dt^{3}) \quad y_{p} = t^{2} e^{-t} (A \sin(t) + B \cos(t) + C + Dt) \quad y_{p} = e^{-t} (A \sin(t) + B \cos(t) + Ct^{3}) \quad y_{p} = t^{2} e^{-t} (A \sin(t) + B \cos(t) + C) \quad y_{p} = e^{-t} (A \sin(t) + B \cos(t) + C \cos(t) +$$

Given that $y_1 = e^t$ and $y_2 = t$ are solutions of (1-t)y'' + ty' - y = 0, find a particular solution of $(1-t)y'' + ty' - y = e^t(1-t)^2$.

$$y_p = e^t(t - t^2/2)$$
 $y_p = e^t(1 - t)$ $y_p = e^{2t} + te^t$ $y_p = te^t + t^2$ $y_p = e^t(1 - t)^3/3$