Name:.

Instructor:_

MATH 228: Introduction to Linear Algebra and Differential Equations

Final Exam

May 7, 2003

Record your answers by placing an \times through one letter for each problem on this page. There are 21 questions worth 6 points each. You start with 24 points.

You may *not* use a calculator.

Determine the number of parameters in the general solution of the linear system

x	+	y	+	z	+	w	=	0
x	+	2y					=	1
		y	—	z	—	w	=	1

2 0 1 3 none, it is inconsistent

	Γ0	1	2	37	
Compute the determinant of	1	2	3	0	
Compute the determinant of	2	3	0	1	•
	L3	0	1	$2 \rfloor$	

 $96\ -16\ 0\ 48\ -72$

Let T be a linear transformation $T : \mathbf{R}^3 \to \mathbf{R}^3$ that satisfies T(1,0,1) = (0,1,0), T(0,1,1) = (1,0,0), and T(1,1,0) = (0,0,1). Find $T^{-1}(1,2,3)$. (5,4,3) (3,4,5) (4,5,3) (3,5,4) (4,3,5)

Find the first coordinate of the vector (5, 6, 7) with respect to the basis $\{(1, 0, 1), (1, 0, 2), (0, -1, 0)\}$. $3\ 2\ -6\ -1\ 5$ Determine which of the following sets is *not* subspace of the given vector space V. All A in $M_{n,n}$ such that $A^{-1} = -A$. All polynomials $a_0 + a_1x + a_2x^2 + a_3x^3$ in P_3 such that $a_3 = a_0 + a_1 + a_2$. All A in $M_{n,n}$ such that $A^T = -A$. All functions f(x) in C[0,1] such that f(1) = 0. All functions f(x) in C[0,1] such that $\int_0^1 f(x) dx = 0$.

Determine which of the following statements is true about the functions $\sin(x)$, $\cos(-x)$, $\sin(x - \pi/2)$.

They are linearly dependent since their span is two-dimensional. They are linearly independent because sin(x) is not a multiple of cos(-x). They are linearly independent by the Wronskian test. They are linearly dependent since cos(-x) = cos(x). They are linearly dependent since their kernel is non-zero.

Find a basis for the column space of the matrix $\begin{bmatrix} 1 & -1 & 2 & 1 \\ -1 & 1 & -1 & 0 \end{bmatrix}$.

$$\begin{bmatrix} 1\\ -1\\ 2 \end{bmatrix}, \begin{bmatrix} 2\\ -1\\ 1 \end{bmatrix} \begin{bmatrix} 1\\ -1\\ 2 \end{bmatrix}, \begin{bmatrix} 2\\ -1\\ 1 \end{bmatrix}, \begin{bmatrix} 2\\ -1\\ 1 \end{bmatrix}, \begin{bmatrix} 1\\ 0\\ -1 \end{bmatrix} \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}, \begin{bmatrix} 2\\ 1\\ 0\\ 0 \end{bmatrix}, \begin{bmatrix} 2\\ 1\\ 0\\ 2 \end{bmatrix}, \begin{bmatrix} -1\\ 1\\ 1\\ 1 \end{bmatrix} \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}, \begin{bmatrix} 2\\ 1\\ 0\\ 0 \end{bmatrix}, \begin{bmatrix} 2\\ 1\\ 0\\ 0 \end{bmatrix}, \begin{bmatrix} 2\\ 1\\ 0\\ 0 \end{bmatrix}, \begin{bmatrix} 1\\ 1\\ -3 \end{bmatrix}$$

Determine the rank and nullity of the matrix $A = \begin{bmatrix} 0 & 2 & 5 & 4 \\ 0 & 0 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{bmatrix}$.

 $\operatorname{rank}(A) = 3$, $\operatorname{nullity}(A) = 1$ $\operatorname{rank}(A) = 1$, $\operatorname{nullity}(A) = 3$ $\operatorname{rank}(A) = 2$, $\operatorname{nullity}(A) = 2$ $\operatorname{rank}(A) = 3$, $\operatorname{nullity}(A) = 3$ $\operatorname{rank}(A) = 1$, $\operatorname{nullity}(A) = 1$

A symmetric 3×3 matrix A has characteristic equation $(\lambda - 1)(\lambda - 2)^2 = 0$. Determine which of the following statements is true.

A is orthogonally diagonalizable.

The $\lambda = 1$ eigenspace has dimension 1 but the $\lambda = 2$ eigenspace could have dimension 1 or 2. A is diagonalizable but may not necessarily be orthogonally diagonalizable. A is not necessarily diagonalizable. A must be a diagonal matrix.

A 3 × 3 matrix A has eigenvalues $\lambda = 1$ and $\lambda = 2$. A basis for the eigenspace corresponding to $\lambda = 1$ is $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$. A

basis for the eigenspace corresponding to $\lambda = 2$ is $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$, $\begin{bmatrix} 1\\-1\\0 \end{bmatrix}$. Determine which of the following is the matrix A.

 $\begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -1 & 2 & 0 \\ 2 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 & -2 \\ 0 & 0 & 1 \\ 0 & 1 & -1 \end{bmatrix}$

Find the standard matrix for the orthogonal projection of \mathbf{R}^3 onto the subspace spanned by $\begin{bmatrix} 1\\1\\1\end{bmatrix}$ and $\begin{bmatrix} 1\\0\\0\end{bmatrix}$.

 $\begin{array}{c} \frac{1}{2} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \frac{1}{2} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} \\ \begin{array}{c} \text{Determine which of the following is an orthogonal matrix.} \\ \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1/\sqrt{2} & 1/\sqrt{3} \\ 0 & 1/\sqrt{2} & 1/\sqrt{3} \\ 0 & 0 & 1/\sqrt{3} \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 2/\sqrt{6} & -1/\sqrt{3} \\ 1 & 1/\sqrt{6} & 1/\sqrt{3} \\ -1 & 1/\sqrt{6} & 1/\sqrt{3} \end{bmatrix} \\ \end{array} \right]$

A linear transformation $T: P_2 \to P_2$ is given by T(p(x)) = p(x+1) - p(x). Find the standard matrix $[T]_B$ for T with respect to the basis $B = \{1, x, x^2 - 5\}$ of P_2 .

$$\begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$

 $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 2 \end{bmatrix}$ A linear transformation $T : M_{2,2} \to R^2$ has standard matrix $[T]_{B',B} = \begin{bmatrix} 1 & 3 & 1 & -1 \\ 0 & 0 & 2 & 4 \end{bmatrix}$ relative to the bases $B = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ of $M_{2,2}$ and $B' = \{(1,0), (0,1)\}$ of \mathbf{R}^2 .

Determine which of the following matrices A satisfy $T(A) = \begin{vmatrix} 1 \\ 2 \end{vmatrix}$.

$$\begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix}$$

Suppose a man suspended from a bungee cord stretches the cord 50 feet longer than its natural length of 100 ft. The man jumps from a bridge while attached to this cord and arrives at a distance of 150 ft below the bridge with a downward velocity of 40 ft/sec. Assume the bungee cord acts like a spring (i.e., it obeys Hooke's Law) and there are no frictional forces. Determine how far below the bridge the man will fall before springing up again. (The gravitational constant is g = 32 ft/sec².)

200 ft 220 ft 180 ft 260 ft 240 ft

The water bath surrounding a certain nuclear reactor contains radioactive material that decays with a half-life of 4 days. New radioactive material is added to the bath at a constant rate of 3 grams per day. Determine the amount in grams of radioactive material in the bath after many days.

$$\frac{12}{\ln 2} \frac{3}{4} \frac{4 \ln 2}{3} \frac{4}{3} \frac{3}{3}$$

The differential equation $(x^2 - 6xy^2 + y^3)dx + (xy^2 - 3x^2y)dy = 0$

is exact. is homogeneous. has an integrating factor that is a function of x alone. has an integrating factor that is a function of y alone. none of the above

Solve the initial value problem y'' + y' = 0, y(0) = 1, y'(0) = 0.

$$y = 1$$
 $y = e^{-t} + t$ $y = \cos(t)$ $y = (e^t + e^{-t})/2$ $y = e^t - t$

Let V be the vector space of infinitely differentiable functions on **R**. Find a basis for the kernel of the linear operator $L: V \to V$ defined by L[y] = 9y'' + 6y' + y.

$$\{e^{-t/3}, te^{-t/3}\} \ \{e^{t/3}, e^{-t/3}\} \ \{t, e^{-3t}\} \ \{t, e^{t/3}\} \ \{e^{3t}, te^{3t}\}$$

Find the form of a particular solution y_p of $y'' - 2y' + 2y = e^t \cos(t) + e^{-t} \sin(t)$.

 $y_{p} = te^{t} (A\sin(t) + B\cos(t)) + e^{-t} (C\sin(t) + D\cos(t)) y_{p} = e^{t} (A\sin(t) + B\cos(t)) + e^{-t} (C\sin(t) + D\cos(t)) y_{p} = e^{t} (A\sin(t) + B\cos(t)) + te^{-t} (C\sin(t) + D\cos(t)) y_{p} = te^{t} (A\sin(t) + B\cos(t)) + te^{-t} (C\sin(t) + D\cos(t)) y_{p} = Ate^{t} \sin(t) + Bte^{-t} \cos(t)$

Given that $y_1 = t$ and $y_2 = t^2$ are solutions of y'' + p(t)y' + q(t)y = 0 for t > 0, find a particular solution y_p of $y'' + p(t)y' + q(t)y = t^3$.

$$y_p = \frac{1}{12}t^5 \ y_p = -\frac{1}{4}t^4 + \frac{1}{3}t^3 \ y_p = t^{-1} - \frac{1}{3}t^{-3} \ y_p = 4t^5 - 3t^4 + t^3 \ y_p = \frac{1}{6}t^3 - t^{-1}$$