Math 230: Some Practice Problems for the First Exam Fall Semester 1998

1. Solve the following initial value problem and determine the interval where the solution is defined.

$$
\left(t^{2}-9\right) \frac{d y}{d t}+2 t y=\frac{2 t^{2}-18}{t^{2}}, \quad y(1)=-1
$$

2. Circle the differential equation whose direction field is shown in the following picture.
A. $y^{\prime}=y(x-y)$
B. $y^{\prime}=(x-y)(x+y)$
C. $y^{\prime}=(1-y)(x-y)$
D. $y^{\prime}=(y-1)(x-y)$
E. $y^{\prime}=(x-1)(x-y)$
3. A tank initially contains 300 gallons of pure water. A mixture containing 1 lb of salt per gallon enters the tank at a rate of $3 \mathrm{gal} / \mathrm{min}$. The well-stirred mixture leaves the tank at a rate of 5 gal/min.
Write the initial value problem needed to find the amount of salt $S(t)$ in the tank at time $t>0$ prior to the instant when the tank is empty. Do not solve it!
[Hint: First you should figure out how many gallons of mixture are in the tank at time t.]
4. Given the differential equation

$$
\frac{d y}{d t}=2 y(y-1)(y-3)
$$

Do not attempt to solve it!

(a) Find the (constant) equilibrium solutions and classify each one as asymptotically stable, unstable, or semistable.
(b) Sketch the graphs of the four solutions y_{1}, y_{2}, y_{3}, and y_{4} which have initial condition $y_{1}(0)=1, y_{2}(0)=2, y_{3}(0)=3$, and $y_{4}(0)=0.5$. Neglect concavity.
5. Find the solution of the initial value problem

$$
6 y^{\prime \prime}-7 y^{\prime}+y=0, \quad y(0)=0, \quad y^{\prime}(0)=5 .
$$

6. Determine the largest interval in which the following initial value problem is certain to have a unique twice differentiable solution.

$$
(t-3)(t-1) t y^{\prime \prime}+t^{2} y^{\prime}+(t-1) y=\sin t, \quad y(2)=-3, \quad y^{\prime}(2)=4
$$

Do not attempt to find the solution!

7. Use Euler's method with a step size of .01 to estimate $y(2.01)$ where y solves the initial value problem

$$
y^{\prime}+\cos (\pi t y)=0
$$

Estimate the difference between the approximate and actual values of y at $t=2.01$.
8. The textbook is a good source of other problems to work. Note in particular the miscellaneous problems on page 94. These will be a good source of first order ODE problems. Be careful, though-we didn't cover techniques for solving non-linear ODE's that aren't separable, so ignore any problem involving these kinds of ODE's.

