MATH 261 – LINEAR ALGEBRA

FALL 1999 (EXAM 1)

(1) Consider the subsets of \mathbb{R}^3 given by

$$A = \{(1,1,0), (0,1,1)\}, \ B = \{(1,2,1), (1,0,-1), (3,4,1)\}.$$

Show that the subspaces generated by A and B are the same.

(2) Consider the subspace W of \mathbb{R}^4 generated by the vectors

$$(1,0,0,3), (-1,-2,0,1), (1,2,3,-2).$$

Does $(2, 3, -1, 5) \in W$?

(3) Is the set $\{(1,0,1), (0,1,1), (1,1,2)\} \subset \mathbb{R}^3$ linearly independent?

(4) Let V be an n-dimensional vector space and $A \subset V$ a set with n elements. Suppose that $\mathcal{L}{A} = V$. Must A be a basis for V? Either prove that the answer is yes or give a counterexample.

(5) Let V be a vector space and consider the *diagonal* set $\Delta \subset V \times V \times ...V$ (p times) given by

 $\Delta = \{ (v, v, ..., v) | v \in V \}.$

(i) Show that Δ is a subspace of $V \times V \times ... V$.

(ii) If dim V = n, what is dim Δ ?

(6) Define what it means for a vector space V to be the direct sum of non-trivial subspaces W_1 and W_2 . For each k, $0 < k < n^2$, exhibit the space $M^{n \times n}$ of $n \times n$ matrices as a direct sum where one of the subspaces has dimension k.

(7) Let W_1 and W_2 be subspaces of the vector space V such that $W_1 \cup W_2$ is also a subspace. Show that one of the subspaces is contained in the other.

(8) Give infinitely many distinct examples of infinite - dimensional vector spaces.