MATH 261 - LINEAR ALGEBRA

FALL 1999 (EXAM 1)

(1) Consider the subsets of \mathbb{R}^{3} given by

$$
A=\{(1,1,0),(0,1,1)\}, \quad B=\{(1,2,1),(1,0,-1),(3,4,1)\}
$$

Show that the subspaces generated by A and B are the same.
(2) Consider the subspace W of \mathbb{R}^{4} generated by the vectors

$$
(1,0,0,3),(-1,-2,0,1),(1,2,3,-2)
$$

Does $(2,3,-1,5) \in W ?$
(3) Is the set $\{(1,0,1),(0,1,1),(1,1,2)\} \subset \mathbb{R}^{3}$ linearly independent?
(4) Let V be an n-dimensional vector space and $A \subset V$ a set with n elements. Suppose that $\mathcal{L}\{A\}=V$. Must A be a basis for V ? Either prove that the answer is yes or give a counterexample.
(5) Let V be a vector space and consider the diagonal set $\Delta \subset V \times V \times \ldots V$ (p times) given by

$$
\Delta=\{(v, v, \ldots, v) \mid v \in V\} .
$$

(i) Show that Δ is a subspace of $V \times V \times \ldots V$.
(ii) If $\operatorname{dim} V=n$, what is $\operatorname{dim} \Delta$?
(6) Define what it means for a vector space V to be the direct sum of non-trivial subspaces W_{1} and W_{2}. For each $k, 0<k<n^{2}$, exhibit the space $M^{n \times n}$ of $n \times n$ matrices as a direct sum where one of the subspaces has dimension k.
(7) Let W_{1} and W_{2} be subspaces of the vector space V such that $W_{1} \cup W_{2}$ is also a subspace. Show that one of the subspaces is contained in the other.
(8) Give infinitely many distinct examples of infinite - dimensional vector spaces.

