MATH 261 - LINEAR ALGEBRA

FALL 1999 (EXAM 2)

(1) Recall that P_{n} denotes the space of real polynomials of degree at most n and consider the linear transformation $T: P_{n} \rightarrow P_{n+1}$ given by $(T f)(x)=\int_{0}^{x} f(t) d t$. Write down the matrix of T relative to the canonical bases of P_{n} and P_{n+1}.
(2) Let $T: V \rightarrow V$ be a linear operator, where V is finite-dimensional. A subspace W of V is said to be T - invariant if $T W \subset W$. Start with a basis for W and then complete it to a basis β of V. What does the matrix of T relative to β look like?
(3) Give bases for the kernel and the range of the linear map $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ given by

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(3 x_{1}+x_{2}-4 x_{3}, 2 x_{2}+x_{3}, 3 x_{1}-2 x_{3}, x_{2}-x_{3}\right)
$$

(4) Consider the subspaces W_{1} and W_{2} of \mathbb{R}^{13}, $\operatorname{dim} W_{1}=8$, $\operatorname{dim} W_{2}=7$. What are the possible dimensions of $W_{1} \cap W_{2}$? Explain your answer carefully and give examples to illustrate some of the possibilities.
(5) a) Define what it means for two vector spaces to be isomorphic. b) Exhibit an isomorphism between \mathbb{R}^{n+1} and the space of polynomials of degree at most n. c) Prove that if two finite-dimensional vector spaces are isomorphic then they have the same dimension. d) Does the converse of c) hold ? You must settle d) by either giving a proof or by exhibiting a counter-example.
(6) Write an essay about products of matrices and how they relate to composition of linear transformations. Your essay must include examples and the proof of at least one important theorem. You can borrow responsibly from known sources but the examples should be your own.

